
Fluid Flow Energy 
 
Consider a parcel of fluid flowing along an (imaginary) pipe as shown in the diagram.  

    
Select the parcel of fluid to be the system of interest, all else is external to the system. Let an 
external force F1 push on the fluid from the left and the fluid push with a force F2 on the right.  
The work done on the system by the external force F1 acting through a distance d1 is F1d1. 
The work done by the system on the external by the force F2 through a distance d2 is F2d2. 
The net work done on the parcel of fluid is thus F1d1 – F2d2 which is energy into the system.  
 
We write the conservation of energy:  (frictional forces may generate thermal energy ▬►heat)  
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We now restrict the analysis to an incompressible, viscous fluid; its density (ρ ≡ mass/volume) is 
a constant everywhere in the fluid. This means as the fluid moves along the pipe through a 
distance d1 on the left and simultaneously through a distance d2 on the right, the amount of mass 
ρA1d1 around point 1 in the fluid is equal to the mass ρA2d2 around point 2.  It is as if the parcel 
of mass ρA1d1 = ρA2d2 moved from point 1 to point 2 due to the energy put into the system. We 
divide the above energy equation on both sides by the volume A1d1 = A2d2 of this mass parcel. 
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and rearrange to obtain Bernoulli’s equation for fluid flow:  
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In any closed system, energy is neither created nor destroyed, it can only transform. 
An ideal fluid has both constant density and zero internal friction (no thermal energy losses). 



Application:   Pressure and Power for Fluid Flow 
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In the human body’s cardiovascular system, as blood flows farther from the heart (pump source 
point 1) more thermal energy leaves the system in the form of body heat so the pressure and the 
average speed of the blood flow decrease. However, for points sufficiently close together energy 
losses due to heat may be negligible thereby greatly simplifying predictions about fluid flow. 
 
Conservation of mass and flow rate:  Rate of mass into a vessel = Rate of mass out of a vessel. 
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Fluid’s resistance to flow and Poiseuille’s Law:    
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where: η = measure of fluid’s internal friction;  L=Length of the vessel;  r = radius of the vessel. 
 
¿ Estimate the pressure difference when human blood flows where the diameter of the vessel 
carrying the fluid (for example the aorta with diameter ≈ 12 mm) decreases by a factor of 5 %?  
The human heart pumps blood at a volume flow rate of about 5.0 liter/min or 83 cm3/s. 
Blood:  density = 1.05 gram/cm3 = 1050 kg/m3 ;       coefficient of viscosity η = 3.5 x 10–3 Pa·s. 
 
A. between two regions, with no internal friction (ideal fluid): (both regions at same height h1 = h2)  
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B. for a given region, with internal friction (streamline: laminar flow with negligible turbulence): 

     Resistance of a 5-cm long vessel at radius 6.0 mm   
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     Pressure difference at radius 6.0 mm,  ∆P1 = Q·R = 83 x 10–6 m3/s ·3.44 x 105Pa·s/m3 = 29 Pa 

     Resistance of a 5-cm long vessel at radius 5.7 mm   
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     Pressure difference at radius 5.7 mm,  ∆P2 = Q·R = 83 x 10–6 m3/s ·4.22 x 105Pa·s/m3 = 35 Pa 
 
C  When the pressure in the blood vessels rises, the heart has to pump more to keep the blood circulating. 

¿ Estimate the power increase (%) the heart must deliver to maintain the same flow rate to the organs?  
 
      Note:   pressure increase of 35.1/28.7 = 1.23 (23 %);     velocity increase of 81.3/73.4 = 1.11 (11 %). 

      Answer:  
4' ' ' ' ' ' ' ' 11.23*1 1.23 23 % .
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A small amount (5%) of arterial occlusion can have a surprisingly large effect on the heart pump! 


