# Evaluation of a Class $n$-fold Integrals by Means of Fractional Integration 

Ben Orin*<br>E-mail: benorin@gmail.com

Received ???, in final form ????; Published online ????
doi:10.3842/JOURNAL.202*.***

Abstract. Abstract here.

## 1 Introduction

In this note we will be evaluating a certain class of $n$-fold integrals over hypercubes via interpolation of the left Hadamard fractional integral operator. We won't be doing any fractional calculus other than a single interpolation theorem which may be used as a basis for fractional integration of the Hadamard type, note that this is not the more common Riemann nor Reiz types of fractional integral interpolation.

## 2 Main Body

### 2.1 Fractional Calculus

Fractional integrals are a generalization of $n$-fold iterated integrals to arbitrary order $\alpha \in \mathbb{C}$ (see theorem 2.2), there at least a few ways to do that, each giving rise to its own fractional calculus. [3, p. 1]

Definition 2.1. The left Hadamard fractional integral operator will be denoted by ${ }_{a} I_{x}^{\alpha}$, for $0<a<x<\infty, \Re[\alpha]>0$ is defined as

$$
{ }_{a}^{H} I_{x}^{\alpha} g(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x} \log ^{\alpha-1}\left(\frac{x}{t}\right) g(t) \frac{d t}{t}
$$

assuming the integral is convergent and where $\log$ denotes the natural logarithm, $\Gamma$ is the usual gamma function, and $\Re$ is the real part.

$$
[3, \text { p. 2] }
$$

Theorem 2.2. Interpolation of this $n$-fold integral by the left Hadamard fractional integral operator.

$$
\int_{a}^{x} \int_{a}^{x_{1}} \cdots \int_{a}^{x_{n-1}} f\left(x_{n}\right) \frac{d x_{n} \ldots d x_{1}}{x_{n} \cdots x_{1}}={ }_{a}^{H} I_{x}^{n} f(x)=\frac{1}{(n-1)!} \int_{a}^{x} \log ^{n-1}\left(\frac{x}{t}\right) f(t) d t
$$

Proof. The proof is by induction on n: (i) base case of $n=1$ is obvious. (ii) Let $P(n)$ be the statement of theorem 2.2. Assume that $P(n)$ holds for some fixed positive integer $n$. Then,

$$
\begin{aligned}
P(n+1) & =\int_{a}^{x} \int_{a}^{x_{1}} \cdots \int_{a}^{x_{n}} f\left(x_{n+1}\right) \frac{d x_{n+1} \ldots d x_{1}}{x_{n+1} x_{1}} \\
& =\int_{a}^{x}\left[\int_{a}^{x_{1}} \cdots \int_{a}^{x_{n}} f\left(x_{n+1}\right) \frac{d x_{n+1} \cdots d x_{2}}{x_{n+1} x_{2}}\right] \frac{d x_{1}}{x_{1}} \\
& =\int_{a}^{x}\left[\frac{1}{(n-1)!} \int_{a}^{x_{1}} \log ^{n-1}\left(\frac{x_{1}}{t}\right) f(t) \frac{d t}{t}\right] \frac{d x_{1}}{x_{1}} \\
& =\frac{1}{(n-1)!} \int_{a}^{x} \int_{t}^{x} \log ^{n-1}\left(\frac{x_{1}}{t}\right) f(t) \frac{d x_{1} d t}{x_{1} t} \\
& =\frac{1}{(n-1)!} \sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} \int_{a}^{x} \int_{t}^{x} \log ^{k}\left(x_{1}\right) \log ^{n-k-1}(t) f(t) \frac{d x_{1} d t}{x_{1} t} \\
& =\frac{1}{(n-1)!} \sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} \int_{a}^{x} \log ^{n-k-1}(t) f(t) \frac{1}{t}\left[\int_{t}^{x} \log ^{k}\left(x_{1}\right) \frac{d x_{1}}{x_{1}}\right] d t \\
& =\frac{1}{(n-1)!} \sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} \frac{1}{k+1} \int_{a}^{x} \log ^{n-k-1}(t) f(t) \frac{1}{t}\left(\log ^{k+1} x-\log ^{k+1} t\right) d t \\
& =\frac{1}{n!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \int_{a}^{x} \log ^{n-k}(t) \log ^{k}(x) f(t) \frac{d t}{t} \\
& =\frac{1}{n!} \int_{a}^{x} \log ^{n}\left(\frac{x}{t}\right) f(t) \frac{d t}{t}
\end{aligned}
$$

and the proof is complete.
The following non-standard definition we will adopt throughout the rest of this note because it is easier to work with than the standard definition 2.1 for our purposes.
Definition 2.3. The modified left Hadamard fractional operator For $0<a<x<\infty, \Re[\alpha]>0$

$$
{ }_{a}^{e H} I_{x}^{\alpha} g(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{\log \left(\frac{x}{a}\right)} u^{\alpha-1} g\left(x e^{-u}\right) d u
$$

where we have substituted $u=\log \left(\frac{x}{t}\right)$ in the integral of definition 2.1 and $u^{\alpha-1}$ is taken as it's principle value.

### 2.2 Evaluations of $n$-fold integrals

Here we reduce the problem of evaluating certain $n$-fold integrals to that of solving a single fractional integral (just think of these as integrals transforms for our purposes).
Theorem 2.4. Analytic continuation of certain n-fold integrals over unit hypercubes. Let z and $\alpha$ be a complex-valued parameters, let $t$ denote a real variable, let $n$ be a positive integer, and for fixed $z=z_{0}$ let $f\left(z_{0}, t\right)$ be a continuous function of $t$ on $[0,1]$. Then for suitable functions $f(z, t)$ (for which the integral converges) define

$$
F_{n}(z):=\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} f\left(z, \prod_{k=1}^{n} \lambda_{k}\right) d \lambda
$$

where $d \lambda:=d \lambda_{n} \ldots d \lambda_{1}$ (and likewise for other dummy variables as well). Then

$$
G(z, \alpha):=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} u^{\alpha-1} e^{-u} f\left(z, e^{-u}\right) d u \text { and } G(z, n)=F_{n}(z)
$$

is the Hadamard fractional integral of order $\alpha$ which is the analytic continuation of $F_{n}(z)$ from integer $n$ to complex-valued $\alpha$ restricted to values for which the integral converges.
Proof. [2] We will use the change of variables $y_{k}=\prod_{i=1}^{k} \lambda_{i}, k=1,2, \ldots, n$ on the integral $F_{n}(z)$ to formulate an integral that represents the function for complex values of the argument via theorem 2.2 .

Note that the for given change of variables we have $\lambda_{1}=y_{1}, \lambda_{k}=\frac{y_{k}}{y_{k-1}}, k=2,3, \ldots, n$, hence

$$
\frac{\partial \lambda_{i}}{\partial y_{j}}=\left\{\begin{array}{cl}
1, & i=j=1 \\
\frac{1}{y_{i-1}}, & i=j \neq 1 \\
-\frac{y_{i}}{y_{i-1}^{2}}, & i=j-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

hence the Jacobian determinant is the product along the diagonal, $\left|\frac{\partial\left(\lambda_{1}, \ldots, \lambda_{n}\right)}{\partial\left(y_{1}, \ldots, y_{n}\right)}\right|=\frac{d y_{n} \ldots d y_{1}}{y_{n} \ldots 1 \cdots y_{1}}$. Notice that this change of variables maps the unit hypercube $[0,1]^{n}$ to the simplex

$$
\left\{\vec{y} \in \mathbb{R}^{n} \mid 0 \leq y_{1} \leq 1,0 \leq y_{i} \leq y_{i-1}, \text { for } i=2,3, \ldots, n\right\}
$$

We replace the upper bound of $y_{1}$ with $x$ so that

$$
\begin{aligned}
F_{n}(z) & =\lim _{a \rightarrow 0^{+}} \lim _{x \rightarrow 1^{-}} \int_{a}^{x} \int_{a}^{y_{1}} \cdots \int_{a}^{y_{n-1}} y_{n} f\left(z, y_{n}\right) \frac{d y_{n} \ldots d y_{1}}{y_{n} \ldots y_{1}} \\
& =\lim _{a \rightarrow 0^{+}} \lim _{x \rightarrow 1^{-}} e_{a}^{e H} I_{x}^{n}(x f(z, x)) \\
& =\frac{1}{(n-1)!} \int_{0}^{\infty} u^{n-1} e^{-t} f\left(z, e^{-t}\right)
\end{aligned}
$$

by theorem 2.2 which we analytically continue to

$$
G(z, \alpha)=\lim _{a \rightarrow 0^{+}} \lim _{x \rightarrow 1^{-}}{ }_{a}^{e H} I_{x}^{\alpha}[x f(z, x)]=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} u^{\alpha-1} e^{-u} f\left(z, e^{-u}\right) d u
$$

The next few computer and table-assisted examples will illustrate the use of theorem 2.4.
Example 2.5. [1, p. 193] Let $G(z, \alpha)=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1} e^{-t} \cdot \frac{e^{t}}{(1+t)^{z}} d t$. We see that this is a beta integral upon canceling $e^{-t} e^{t}=1$ giving the value $G(z, \alpha)=\frac{\Gamma(z-\alpha)}{\Gamma(z)}$. We then determine what $f(z, t)$ is by comparing the integrand of the integral defining $G(z, \alpha)$ in this example to the corresponding integrand in theorem 2.4, to see that $f\left(z, e^{-t}\right)=\frac{e^{t}}{(1+t)^{z}}$ which implies that $f(z, t)=\frac{t^{-1}}{(1-\log (t))^{z}}$ and hence the evaluation of the $n$-fold integral of theorem 2.4 is

$$
F_{n}(z)=\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1}\left(\prod_{k=1}^{n} \lambda_{k}\right)^{-1}\left(1-\log \prod_{k=1}^{n} \lambda_{k}\right)^{-z} d \lambda=\frac{\Gamma(z-n)}{\Gamma(z)}=G(z, n)
$$

Note that other integrals may be deduced from this by differentiation under the integral sign w.r.t. $z$, such as

$$
F_{n}^{\prime}(z)=\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} \frac{-\log \left(1-\log \prod_{j=1}^{n} \lambda_{j}\right)}{\left(\prod_{m=1}^{n} \lambda_{m}\right)\left(1-\log \prod_{k=1}^{n} \lambda_{k}\right)^{z}} d \lambda=\frac{\Gamma(z-n)\left(\psi^{(0)}(z-n)-\psi^{(0)}(z)\right)}{\Gamma(z)}
$$

where $\psi^{(m)}$ is the $m^{t h}$ derivative of the diagamma function.
Example 2.6. [4] Let $G(z, \alpha, y)=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1} e^{-t} \cdot \frac{e^{-(y-1) t}}{1-z e^{-t}} d t$. Wolfram.functions.com gives the value $G(z, \alpha, y)=\sum_{k=0}^{\infty} \frac{z^{k}}{(k+y)^{\alpha}}=\Phi(z, \alpha, y)$ where $\Phi$ is the Lerch Transcendent. We see that $f(z, t, y)=\frac{t^{y-1}}{1-z t}$ and hence the evaluation we seek is

$$
F_{n}(z, y)=\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1}\left(1-z \prod_{k=1}^{n} \lambda_{k}\right)^{-1} \prod_{j=1}^{n} \lambda_{j}^{y-1} d \lambda=\sum_{k=0}^{\infty} \frac{z^{k}}{(k+y)^{n}}=\Phi(z, n, y)
$$

More integrals maybe calculated by differentiation under the integral sign w.r.t. $y$,

$$
\begin{aligned}
\frac{\partial F_{n}}{\partial y}(z, y) & =\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1}\left(1-z \prod_{k=1}^{n} \lambda_{k}\right)^{-1} \prod_{j=1}^{n} \lambda_{j}^{y-1} \cdot \log \prod_{\ell=1}^{n} \lambda_{\ell} d \lambda \\
& =-n \sum_{k=0}^{\infty} \frac{z^{k}}{(k+y)^{n+1}}=-n \Phi(z, n+1, y)
\end{aligned}
$$

Differentiating $m$ times w.r.t. $y$, we get

$$
\begin{aligned}
\frac{\partial^{m} F_{n}}{\partial y^{m}}(z, y) & =\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1}\left(1-z \prod_{k=1}^{n} \lambda_{k}\right)^{-1} \prod_{j=1}^{n} \lambda_{j}^{y-1} \cdot \log ^{m} \prod_{\ell=1}^{n} \lambda_{\ell} d \lambda \\
& =(-1)^{m} \frac{(n+m-1)!}{(n-1)!} \sum_{k=0}^{\infty} \frac{z^{k}}{(k+y)^{n+m}}=(-1)^{m} \frac{(n+m-1)!}{(n-1)!} \Phi(z, n+m, y)
\end{aligned}
$$

## Acknowledgements

What does a man have that God has not given him? Nothing.
Thanks to Howard Cohl for helping me.

## References

[1] V. Boros, G. Moll. Irresistible Integrals. Cambridge University Press, New York, 2004.
[2] FactChecker. www.PhysicsForums.com.
https://www.physicsforums.com/threads/i-need-a-mapping-from-the-unit-hypercube-0-1-n-to-a-985017/\#post-6305550.
[3] D. Jarad F. Abdeljawad T. Baleanu. Caputo-type modification of the hadamard fractional derivatives. Advances in Difference Equations, 2012(142):142-150, 2012.
[4] Wolfram, S. Functions.Wolfram.com.
https://functions.wolfram.com/ZetaFunctionsandPolylogarithms/LerchPhi/07/01/ 01/01/0001/.

