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1 Introduction

In this note we will be evaluating a certain class of n-fold integrals over hypercubes via inter-
polation of the left Hadamard fractional integral operator. We won’t be doing any fractional
calculus other than a single interpolation theorem which may be used as a basis for fractional
integration of the Hadamard type, note that this is not the more common Riemann nor Reiz
types of fractional integral interpolation.

2 Main Body

2.1 Fractional Calculus

Fractional integrals are a generalization of n-fold iterated integrals to arbitrary order α ∈ C (see
theorem 2.2), there at least a few ways to do that, each giving rise to its own fractional calculus.
[3, p. 1]

Definition 2.1. The left Hadamard fractional integral operator will be denoted by aI
α
x , for

0 < a < x <∞,ℜ [α] > 0 is defined as

H
a I

α
x g (x) =

1
Γ(α)

∫ x

a
logα−1

(
x
t

)
g (t) dtt

assuming the integral is convergent and where log denotes the natural logarithm, Γ is the usual
gamma function, and ℜ is the real part.

[3, p. 2]

Theorem 2.2. Interpolation of this n-fold integral by the left Hadamard fractional integral
operator.

∫ x

a

∫ x1

a
· · ·
∫ xn−1

a
f (xn)

dxn...dx1
xn···x1 = H

a I
n
x f (x) =

1
(n−1)!

∫ x

a
logn−1

(
x
t

)
f (t) dt

Proof. The proof is by induction on n: (i) base case of n = 1 is obvious. (ii) Let P (n) be the
statement of theorem 2.2. Assume that P (n) holds for some fixed positive integer n. Then,
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P (n+ 1) =

∫ x

a

∫ x1

a
· · ·
∫ xn

a
f (xn+1)

dxn+1...dx1
xn+1···x1

=

∫ x

a

[∫ x1

a
· · ·
∫ xn

a
f (xn+1)

dxn+1...dx2
xn+1···x2

]
dx1
x1

=

∫ x

a

[
1

(n−1)!

∫ x1

a
logn−1

(
x1
t

)
f (t) dtt

]
dx1
x1

= 1
(n−1)!

∫ x

a

∫ x

t
logn−1

(
x1
t

)
f (t) dx1dtx1t

= 1
(n−1)!

n−1∑
k=0

(−1)k
(
n− 1
k

)∫ x

a

∫ x

t
logk (x1) log

n−k−1 (t) f (t) dx1dtx1t

= 1
(n−1)!

n−1∑
k=0

(−1)k
(
n− 1
k

)∫ x

a
logn−k−1 (t) f (t) 1

t

[∫ x

t
logk (x1)

dx1
x1

]
dt

= 1
(n−1)!

n−1∑
k=0

(−1)k
(
n− 1
k

)
1

k+1

∫ x

a
logn−k−1 (t) f (t) 1

t

(
logk+1x− logk+1t

)
dt

= 1
n!

n∑
k=0

(−1)k
(
n
k

)∫ x

a
logn−k (t) logk (x) f (t) dtt

= 1
n!

∫ x

a
logn

(
x
t

)
f (t) dtt

and the proof is complete. ■

The following non-standard definition we will adopt throughout the rest of this note because it
is easier to work with than the standard definition 2.1 for our purposes.

Definition 2.3. The modified left Hadamard fractional operator For 0 < a < x <∞,ℜ [α] > 0

eH
a Iαx g (x) =

1
Γ(α)

∫ log(xa )

0
uα−1g

(
xe−u

)
du

where we have substituted u = log
(
x
t

)
in the integral of definition 2.1 and uα−1 is taken as it’s

principle value.

2.2 Evaluations of n-fold integrals

Here we reduce the problem of evaluating certain n-fold integrals to that of solving a single
fractional integral (just think of these as integrals transforms for our purposes).

Theorem 2.4. Analytic continuation of certain n-fold integrals over unit hypercubes. Let z and
α be a complex-valued parameters, let t denote a real variable, let n be a positive integer, and
for fixed z = z0 let f(z0, t) be a continuous function of t on [0, 1]. Then for suitable functions
f(z, t) (for which the integral converges) define

Fn(z) :=

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
f

(
z,

n∏
k=1

λk

)
dλ
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where dλ := dλn . . . dλ1 (and likewise for other dummy variables as well). Then

G(z, α) := 1
Γ(α)

∫ ∞

0
uα−1e−uf(z, e−u) du and G(z, n) = Fn(z)

is the Hadamard fractional integral of order α which is the analytic continuation of Fn(z) from
integer n to complex-valued α restricted to values for which the integral converges.

Proof. [2] We will use the change of variables yk =
k∏
i=1

λi, k = 1, 2, . . . , n on the integral Fn(z)

to formulate an integral that represents the function for complex values of the argument via
theorem 2.2 .

Note that the for given change of variables we have λ1 = y1, λk =
yk
yk−1

, k = 2, 3, . . . , n, hence

∂λi
∂yj

=


1, i = j = 1
1

yi−1
, i = j ̸= 1

− yi
y2i−1

, i = j − 1

0, otherwise

hence the Jacobian determinant is the product along the diagonal,
∣∣∣∂(λ1,...,λn)∂(y1,...,yn)

∣∣∣ = dyn...dy1
yn−1···y1 .

Notice that this change of variables maps the unit hypercube [0, 1]n to the simplex

{y⃗ ∈ Rn|0 ≤ y1 ≤ 1, 0 ≤ yi ≤ yi−1, for i = 2, 3, . . . , n} .

We replace the upper bound of y1 with x so that

Fn(z) = lim
a→0+

lim
x→1−

∫ x

a

∫ y1

a
· · ·
∫ yn−1

a
ynf(z, yn)

dyn...dy1
yn...y1

= lim
a→0+

lim
x→1−

eH
a Inx (xf(z, x))

= 1
(n−1)!

∫ ∞

0
un−1e−tf

(
z, e−t

)

by theorem 2.2 which we analytically continue to

G(z, α) = lim
a→0+

lim
x→1−

eH
a Iαx [xf(z, x)] = 1

Γ(α)

∫ ∞

0
uα−1e−uf(z, e−u) du

■

The next few computer and table-assisted examples will illustrate the use of theorem 2.4.

Example 2.5. [1, p. 193] Let G(z, α) = 1
Γ(α)

∫∞
0 tα−1e−t · et

(1+t)z dt. We see that this is a

beta integral upon canceling e−tet = 1 giving the value G(z, α) = Γ(z−α)
Γ(z) . We then determine

what f(z, t) is by comparing the integrand of the integral defining G(z, α) in this example to
the corresponding integrand in theorem 2.4, to see that f(z, e−t) = et

(1+t)z which implies that

f(z, t) = t−1

(1−log(t))z and hence the evaluation of the n-fold integral of theorem 2.4 is

Fn(z) =

∫ 1

0

∫ 1

0
· · ·
∫ 1

0

(
n∏
k=1

λk

)−1(
1− log

n∏
k=1

λk

)−z

dλ = Γ(z−n)
Γ(z) = G(z, n).
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Note that other integrals may be deduced from this by differentiation under the integral sign w.r.t.
z, such as

F ′
n(z) =

∫ 1

0

∫ 1

0
· · ·
∫ 1

0

− log

(
1−log

n∏
j=1

λj

)
(

n∏
m=1

λm

)(
1−log

n∏
k=1

λk

)z dλ =
Γ(z−n)(ψ(0)(z−n)−ψ(0)(z))

Γ(z)

where ψ(m) is the mth derivative of the diagamma function.

Example 2.6. [4] Let G(z, α, y) = 1
Γ(α)

∫∞
0 tα−1e−t · e−(y−1)t

1−ze−t dt. Wolfram.functions.com gives

the value G(z, α, y) =
∞∑
k=0

zk

(k+y)α = Φ(z, α, y) where Φ is the Lerch Transcendent. We see that

f(z, t, y) = ty−1

1−zt and hence the evaluation we seek is

Fn(z, y) =

∫ 1

0

∫ 1

0
· · ·
∫ 1

0

(
1− z

n∏
k=1

λk

)−1 n∏
j=1

λy−1
j dλ =

∞∑
k=0

zk

(k + y)n
= Φ(z, n, y).

More integrals maybe calculated by differentiation under the integral sign w.r.t. y,

∂Fn
∂y (z, y) =

∫ 1

0

∫ 1

0
· · ·
∫ 1

0

(
1− z

n∏
k=1

λk

)−1 n∏
j=1

λy−1
j · log

n∏
ℓ=1

λℓdλ

= −n
∞∑
k=0

zk

(k + y)n+1
= −nΦ(z, n+ 1, y)

Differentiating m times w.r.t. y, we get

∂mFn
∂ym (z, y) =

∫ 1

0

∫ 1

0
· · ·
∫ 1

0

(
1− z

n∏
k=1

λk

)−1 n∏
j=1

λy−1
j · logm

n∏
ℓ=1

λℓdλ

= (−1)m (n+m−1)!
(n−1)!

∞∑
k=0

zk

(k + y)n+m
= (−1)m (n+m−1)!

(n−1)! Φ(z, n+m, y)
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