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Interaction of electrons with lattice vibrations

By H. FrouricH, F.R.S.
Department of Theoretical Physics, University of Liverpool

(Received 30 July 1952)

Using methods of modern field theories a canonical transformation of the Hamiltonian of
free electrons in the field of the lattice vibrations is performed. This transformation takes
account of the bulk of the interaction of the electrons with the vibrational field and leads
to a renormalization of the velocity of sound and of the interaction parameter . An objec-
tion of Wentzel’s against the use of large F' is removed in this way. Even in the case of
weak interaction the transformed Hamiltonian contains already in zero order terms which
require a modification of the usual procedure in the theory of metals, and which at low
temperatures lead to an increase of the effective mass of the electrons. Treatment of
strong interaction requires the development of a new method.

1. INTRODUCTION

In the theory of metals in its simplest form electrons are treated as free, apart from
their interaction with the lattice vibrations. Bloch (1928) has described this inter-
action in terms of absorption or emission of vibrational quanta. Recently, it has
been noticed by the author (Fréhlich 1950, quoted as I) that this implies also the
possibility of virtual emission and absorption of quanta and in this way gives rise
to an interaction between electrons. In fact, the situation is best described in
terms of a field theory in which the electrons are the sources of the vibrational field.
Discussion with the help of perturbation theory led to the introduction of an
interaction parameter F. It was found that if ¥ is larger than a critical value F,
then the electron distribution in momentum space differs in the ground state from
the normal distribution. This new state was tentatively identified with the super-
conductive state which led to a prediction of the isotope effect. Starting from a
knowledge of this effect, Bardeen (1950) has developed a theory on similar lines.

Further development of the theory has been hindered so far by mathematical
difficulties. For the condition F' > Fj implies that perturbation theory can no longer
be usefully applied to calculate details of the energy spectrum, although it should
be expected to lead to the correct magnitude of the energy of the ground state.

The case of normal metals for which F < F; shows also some points of interest.
Thus, as Buckingham (1951) has pointed out, the density of energy levels is altered
by the interaction. This may lead to anomalies in the specific heat. Also, as was first
suggested by Cooke (1951), certain anomalies in the soft X-ray emission spectrum
of Na observed by Skinner (1940) might find their explanation in this way. The only
explanation that was available at the time would require an overlapping of energy
bands which is very unlikely in Na.

The major part (#,) of the interaction energy between the electrons and the
lattice vibrations is due to an adjustment of the electronic density in the potential
field of the lattice vibrations and follows them adiabatically. It is this part which
gives rise to the (negative) self energy of a vibrational quantum calculated by
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Wentzel (1951), as has been suggested by Huang (1951). All the interesting effects
mentioned above are, however, due to a second part (£,) of the interaction which is
dynamicin nature; its ratio to £, is very small, of the order of the ratio of the velocity
of sound to the velocity of the electrons. Wentzel has pointed out that the first part
E, would lead to a breakdown of the lattice if F' > F.

It is the main object of the present paper to perform a more satisfactory separa-
tion of E, from E, than by ordinary perturbation theory. This will be done by a
canonical transformation, using methods of modern field theories. It will lead to
a renormalization of the velocity of sound and of the interaction parameter.
Wentzel’s objection to the possibility of choosing I larger than F, will then be found
to hold no longer.

2. A CANONICAL TRANSFORMATION
Consider a Hamiltonian which consists of three parts,
H' = Hy +H;+ Hyy, (2-1)
due to free electrons, field, and interaction. Let P(r,?) be a longitudinal displace-
ment of the lattice and assume

H, = %f(MP2+ Ms'?(div P)?)ndr, curlP =0, (2-2)

where M is the mass of an ion of the lattice, n their number per unit volume and
s’ the velocity of sound in the absence of ion-electron interaction.t It is useful to
introduce here a complex function B instead of the real P by

divB = divP +i15w/sw’, curl B = 0. (2-3)
For then if B is developed into plane waves (V = total volume)
_w( 2 ! iwr .
B—a(m) 2 by 7, (2:4)
one finds H, = %nMs’zf[' div B |2dr = } X fiws’ (b by + by byt). (2-5)

Quantization according to Bose-Einstein statistics requires the commutation rules
(bys by) = byby—byby = 0, (by, b)) = 0y . (2-6)
The electronic part will be based on wave functions
Y=V Eage™, (27)
where to satisfy the Pauli principle *

o +ayay =0, af qt+aaf =0y (2-8)

Thus Hy = X e0if a, (2-9)
K

with €, = H2k?/2m. (2-10)

1 A slightly more general formulation would be obtained by replacing (div P)? by X (8P,/0xy)?.
Kk
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Finally the interaction will be written as

Hype = C" |y T o div Pdr =i 3 D, (byoyf a5 —bik aif ), (2-11)
wk
where €' is a constant with dimension of an energy. Note that the a, commute
with the b, and that
v Pw = Ul = ply (2-12)
is the Fourier coefficient of the electronic density operator. The constants D,, are
real, and given by C'%hws'  4F'C
2 _ L5 ’ .13
Du, = 2nV Ms'2 SnV}in ’ (2:13)
. N 3 0/2

Thus F’ becomes identical with the interaction constant F introduced in I (2-9),
if we replace there C? and s by 9C'%/8 and s’ respectively. ¢ is the Fermi energy as
defined in I (2-2).

From (2-1), (2-5), (2-6), (2-9), (2-11) and (2-12) one obtains

H' = 36,05 + S hws' (b by+3) +5 5 Dy(bupss —bif pu)- (2:15)
k w w,k

We now wish to perform a canonical transformation which removes the inter-
action term as completely as possible. Let S be an operator satisfying
St =-8, (2-16)
so that eS is unitary. Then
H=e¢5"H'eS=H —(S,H)+ 1S, (S,H)) + ..., (2-17)

where the brackets represent the commutators similar to the notation in (2-6).
S will be assumed of the form

S:ZSW’ Sw:_ywbw+7;b; :_S;’ (2°18)
w
where Yw = % ¢(k’ W) al-:k Qg—w> 7:1_ = f?l ¢*(k: w) a;—wak’ (2-19)

and ¢(k, w) is a c-number which will be discussed below.

At this stage it should be remembered that the theory of metals contains the
hypothesis that the elastic waves can be considered as harmonic. This means that
in the Hamiltonian terms containing b2, by, by, b} by(W = V), and similar combinations,
should be negligible after the observed velocity of sound s has been introduced.
This is not yet obvious from (2-15) because s’ is not the observed velocity of sound.
Following this hypothesis we can neglect terms with S,S; if w+v. Then from

(2:17) and (2-18) 5 _ H' + 3 {— (8, H') + 3(Sg, (Sg, H'))} + ... (2-20)
w
Let now H' = Hy+ H, + H,, (2-21)
where H, = Y e, o ar + X fiwsby by, + X, hws’, (2-22)
k w w
H, = § H,g, le = ti(bwp; - b;pw)’ (2-23)
H, = ¥ H,,, H,y = fiw(s'—s)b} by (2-24)
w

19-2
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The velocity s will be defined below so as to approach the velocity of sound as
closely as possible. Then arranging terms in rising order of by, (except for fiwsby by),

H=H—- X {(Sw, Hy) + Hyw} + % {(Stws $(Sws Ho) = Hiw) + Ho} + ... (2:25)
This expression can be evaluated with the help of (2-6) and (2-8). For then
(o ay, af @) = 805 a,— S0 o, (2-26)
and hence with (2-19),
(Ve 0 @) = — (K, W) aif wk_w+¢(k+w, W) O (2-27)
(Vs G w) = — P(K, W) (1_q — 1), T = o ay, (2-28)
(Yo Ok Ope_) = — P(K—W, W) @il %~2w+¢(k+W, W) Ok w (2-29)

Hence if c.c. indicates the conjugate complex of the previous expression,

- (Sw> HO) + le = bw % [(ek—w_ €x + ﬁws) ¢(k7 W) + @Dw] alj— a’k—w+ ¢.c. (2.30)

Also, since b2 terms will be neglected,
(S bwa’l-{l‘ O w) = — (Vs ai Q) b!gv + ('y; bt aif Ay _wby)

. :b\;’l— bw(’)/v;vf’al_:F a’k——w)—“l—f a’k—w’)/;-, (2:31)
so that '

(Sw> 3(Sws Ho) — Hiw) + Hyg = by; b{fiw(s” — )
- [(ek_w—€k+ﬁws) | p(k, W) [2+iD,,($*(K, W) — $(K, W)] (1 — 1)}
— S {[h(ekew— i+ Fws) (K, W) +iD,, ) aif ay_y s +c.0.). (2:32)
"
We shall now choose ¢(k, w) such that the interaction term in the transformed
Hamiltonian, i.e. expression (2-30), becomes as small as possible. Let

—1iD

ok, w) = P (1-Ak,w)), (2-33)
1. <T2
where Ak, w)=A%k,w) = 0’ if (e y— € +7iws)? o2 (2-34)

The function A has to be introduced to prevent ¢(k, w) from becoming infinite
which would prevent the development indicated in (2-17) and (2-25). The energy
T, has to be chosen such as to make this series converge.

As a next step the velocity s should be determined such that the term by} by, 7iws
in H, is the only term of the Hamiltonian H containing by b,. This requires that in
(2-32) the term proportional to by b, must vanish. Since 7, (cf. 2-28) is an operator
this would make s an operator. Therefore n, will be replaced by its expectation value
7, and hence from (2-32)

fiaw(s’ —s) 2{ €x_w— €x +Hiws) | p(k, W) [2+sz(¢*(k W) — d(K, W)} (T _yy — 7o)
(2-35)

or using (2-33) fiw(s' —s) = Zw(ﬁk—ﬁk_w). (2-36)

E €k_w— € +7ws
Thus s may depend on w.
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3. THE RENORMALIZED HAMILTONIAN

From (2-25) making use of (2-22), (2-23), (2-30), (2:33) and of the fact that in
view of (2-36) the b*b term of (2-:32) can be neglected,

H = 3 ¢ ai a+ X hwsb by, + 3, Hiws’
w w
+7; E Dw(bwal-{F a’k—w_b;r— alf—w“k) A(k1 W) +Hs’ (31)
w,k

where Hs= __% 2 D!?v(l"i'A(k’W))(l_A(q)W))
whka €y — €q+Tiws

In this Hamiltonian the physical meaning of the quantities ¢, and b, is different

from that introduced in § 2. However, since they were defined by the commutation

rules (2-6) and (2-8), which still hold, it is not necessary to use a new notation. As

a consequence, for instance, the Fourier component of the electronic density is no

longer given by (2-12), but by

(o ay_wa_ wa,+c.c.). (3-2)

Pw = es” %‘4 o0y €5, (3:3)

which can be calculated in a similar way as H has been obtained in § 2. The quantity
Z a0y, on the other hand, now represents the Fourier eomponent of the density

of particles described by plane waves with amplitudes a, satisfying Fermi statistics.
These particles are electrons, carrying with them some lattice deformation. The
bg’s on the other hand, are now the amplitudes of oscillations of the ions of the
lattice carrying with them oscillations in the electronic density which lead to the
renormalized velocity of sound.

The various terms in the Hamiltonian H, equation (3-1), have thus the following
meaning. The first two terms represent the energy of the free particles and the free
vibrations described by a, and by, respectively. The third term leads to absorption
or emission of vibrational quanta by the particles; but in view of the factor A it
vanishes unless energy is conserved within a range I',,, as follows from (2-34). The
fourth term H, represents an interaction between the particles.

In the derivation of (3-1) it was assumed that I'), must be chosen such that the
terms indicated by dots in (2:25) can be neglected. Clearly if I, is very large then
H, equation (3-1), becomes identical with H', equation (2-15). To make the best use
of the transformation I' ), should therefore be chosen as small as possible. The first
of the neglected terms in (2-25) which contains S,, in third order has therefore been
calculated. This term is certainly negligible if

T2 ~ (hw(s' — )2, (3-4)
and it might even be smaller. From this it follows that in good approximation (error
~fiws’[{) equation (2-36), determining the renormalized velocity of sound, becomes
nols' — ) sy Do Tcw) _ g 50 D (3-5)

k  Cg w6 k Cxw— Gk ’
where the dash indicates the principal value for the integral which replaces the

sum by ) 1%
% —>(2—7r)~3 2fdk. \ (3-6)
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Here dk is the volume element in k-space, and the factor 2 takes care of the two
possibilities for electronic spin. In the same approximation in which I',, and #ws
have been neglected 7, can be replaced by a Fermi distribution at the absolute zero
of temperature. In all cases of interest this involves an error of less than 19,.
The integration is straightforward and leads to

R | (3-7)

(v = number of electrons per ion) in agreement with Wentzel (1951). Here g is
a numerical factor; g = 1if w<k,; g = } if w = k,, where £k, is the wave number of
the highest occupied level.

The term H,, equation (3-2), can be simplified by introducing an operator s,, by

Dy (1-A(k, w))

ﬁw(s "Sop,) = = Gkﬁw—6k+ﬁws (nk—w_nk)
_ «Da(1+AKk,q)) (1-A(q, W), +
- Eq 6q~w_€q+ﬁws (ak Ay—w> a’q—-wa’q)7 (3 8)
making use of A2=A, and of (cf. 2-26)
(a'k Ty—w> a;_ w q) 8kq(nk Mg —)- (3-9)

Thus according to (2:36), s is the expectation value of s,,. Also, with the help of
(3-8), one finds

—%§ {D%"E:, €q_w— €q +Tiws
(1+A(k, w)) (1-A(q, w))
€qw— €q +Tiws
(1+AKk-w, —w))(1-A(q—wW, —W)) _

kq €q— Eqy +Tiws

) Ay Uy Og— g — (s — sop,)}

—%Z{DfuZ
w k,q

+ +
Oq— g Uk a’k—~w}

--iz{ny

Introduction of this equation and of (3-8) into (3-2) leads to

) 4F
Hs = - 2 {%ﬁw(s _Sop.) + gné Z l)b((L W) at_;{_ aq—wal_:twak; s (3'11)
w k,q

atl aq~wa'k wa’k} (3-10)

where we have defined

¥(q, W) = lhws{<1+A(k ,w)) (1—A(q, W))

Eqw — Eq +HWS

_(I+Ak—w, —w)) (1 -A(q—w, —W)I} (3-12)
€qw— Eq— TS
Use has been made of (2-13) according to which
Dy, 4§ F's
fws ~ 3nV s (3-13)
and with the help of (3-7) the renormalized interaction parameter F has been
defined by ‘o /
prs_ (3-14)

s 1—2vgF"
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4. DrscussioN
The final Hamiltonian is obtained from (3-1) and (3-2) using (3-11) and (3-13) as

H =Y e af o+ {ﬁws byt by + $fiws,p,
k

#i(520)' s 5 Gt a0 0y Al W)

_égﬁ_’ E 1//((1, a’q all~wak wak} (4.1)

3nV i
Since in good approximation s,, can be replaced by s the renormalization of the
velocity of sound can be considered as completed. According to (3:7) to make s
positive the original interaction parameter F' must satisfy the condition
2vF'g <1, (4-2)

as was found by Wentzel (1951). The transformed Hamiltonian contains, however,
no longer an F'’ but the renormalized interaction parameter F which, according to
(3-14), can have any positive value, however large, in spite of Wentzel’s condition
(4-2). Wentzel’s objection against large F thus no longer holds.

In the approximation in which the particles are treated as free the Hamiltonian
(4-1) gives already in zero order the bulk of the results previously obtained by
perturbation theory in second order. In this case

afa, =7y =0o0rl, afae ,=0 if w=0. (4-3)
The last term in (4-1) thus contributes to the energy in zero order only if k = q.
Using (3-12), (2-34) and (2:36) this contribution can be written as
_ é&z%ﬁ 1-Ak,w) 1-Ak—w,—W)
Cow—EcHWS € _— € — WS
4FE fws(1—-A(k,w))_

= — —_ = 1 - .
§'{3nd Exw — €+ WS (1 —T_g) + (s 8)}- (44)

) (1 =7

In thelimiting case that I',,—> 0 the factors (1 — A) imply that principle values have to
be taken in the sums (integrals). From the left-hand side of (4-4) it is seen then that
the last term of (4-1) is nearly identical with the energy , obtained in I from per-
turbation theory if the renormalized values of s and F are used. It will be remembered
that this term forms the basis of the discussions in I. Also, since the first term on the
right-hand side of (4-4) becomes formally identical with the total energy obtained
in perturbation theory, #/, + I,, it follows that the energy E, of I represents essen-
tially the energy change Xi#iw(s—s’) of the zero point energy of the oscillators
due to renormalization of the velocity of sound.

With growing T',, the factors (1 —A) require a choice of the limits of integration
which eliminates from the energy a finite range I',, near the values at which the
denominator vanishes. At the same time the third term of (4-1) makes a contribution
A which, in view of the factor A(k, w), just arises from the energy regions elimin-
ated in the last term by the factors (1 — A(k, w)). This third term is connected with
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transitions between states of nearly equal energy; it thus lifts a degeneracy due to
the possibility of emission and absorption processes which conserve energy within
a range I',,. For a Fermi distribution f, at the absolute zero of temperature, there-
fore, AE = 0 if I, <7iws. If a single electron is lifted into a state k outside this

distribution then AE = —[S DAk, W) (1—Ti_,)]t (4:5)
w

is found. If I'), = fiws is chosen then Bardeen’s (1950, equation (4-3)) expression is
obtained which, as he has shown, leads to nearly the same results as obtained in T
(i.e. I'),—>0 and use of principle values). Thus in the present approximation the
value of I, has no great influence on the results.

The free particle approximation used here may be hoped to lead to reasonably
good results if F is sufficiently small, i.e. for normal metals as discussed in §1. Even
in this case, however, the usual procedure in the theory of metals must be modified
s0 as to include the last term in the Hamiltonian (4-1) because it contributes to the
energy already in zero order. At low temperatures this term leads to a change of
the dependence of electronic energy on wave number in a small energy region near
the Fermi surface as follows from figure 1@ of I. This modification can be expressed
in terms of an increase of the effective mass of electrons over the high temperature
value. It is probably responsible for the effects mentioned in § 1 and should also
alter the theoretical ratio of high to low temperature electrical conductivity which,
as pointed out by Bhatia (1952), cannot be considered as satisfactory at present.

For large F (superconductors) the free particle approximation would lead to the
results found in I. For dimensional reasons it may be hoped to yield a correct
magnitude of the energy of the ground state, a view supported experimentally by
the isotope effect of superconductors. The free particle approximation cannot,
however, be expected to be applicable to the calculation of details of the energy
spectrum, and hence of the specific heats and the electro-magnetic properties of
superconductors. Theoretical treatment of these effects must wait, therefore, for
the development of new methods to deal with equation (4-1).
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