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9. Dirac Particles in External Fields: Examples and Problems

Exercise 9.5.
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Before continuing, we want to give the representation of the .. (U, 9) in (11)
[see Example 9.3 and Chap. 10, (10.32)]:
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Let us now find the bound states.® For these, E > Vi + mgc? and —mgc? < E <
moc?. In the inner region of the potential field we must therefore take the solutions
(15) and set a; = 0, in order that the wave functions remain normalizable at the
origin. On the other hand in the outer region we must set b, = 0 in (17), so that
the wave functions are normalizable at infinity. Both solutions must be joined at
r = Ry. One can eliminate the normalizing constants a,, b, by adjustment of the
ratio u; /u, at r = Ry. This gives
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L _ZWR) gy, 2y =
W] Ry (kRg) (£ Yo+ moc?)
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and
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with

hek = \/(E + Vo2 — mdct

hicK = y/mic* — E? . (25)

For || = 1 one can further simplify the equations analytically, and for s states
(k=—-1,1,=0,1_, = 1) this results in

kR, sinkR, k e KRo E + myc?

- =+ 2
sinkRy — kR cos kR, +K e~ KRo(1 + 1/KRp) E + Vi + myc? (26)
After some transformations one gets
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S W. Pieper, W. Greiner: Z. Phys. 218, 327 (1969).
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Analogously one obtains for p; /, states (k =1, [, =1, [_, = O): Exercise 9.5.
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Another form for (26) 1s (defining a = kRp)
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and for (28) one can write:

(moc?/hc)Roy /1 — (E2/m3c*) + 1
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From (27) and (29) we can now calculate the energy eigenvalues of s ! and p !
states. If we assume Ry to be small (mgcRy/h < 1), we may solve (27) and (29)
approximately by expanding in terms of mocRo/F. A short calculation (which is left
as an exercise for the reader) leads to the following Table 9.1, where n = 1,2, 3, ...
labels the states. Similarly, one can find approximate solutions for (30) and (31)

acota—1=

1 —acota =

Table 9.1. Energy eigenvalues for s,/, and py/, states in a small potential box

E Volk = —1) Vo(k = +1)
h nm h nm
2 2 2
3 R
moc moc Ro moc moc Ro e
A nm h nm
0 e B 2 e 2
moc Ry ¢ moc Ro Mk
h h
—moc? o + moc? L + 3moc?
mopc R() mgyc R()

n=1,2,3,... (mycRo/h) < 1

for the opposite limiting case of a very large potential box (mocRo/h > 1), and
this is shown in Table 9.2. One sees that the p | states are energetically higher than
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Table 9.2. Energy eigenvalues for s/, and p, /2 States in a large potential box

E V(s = —1) Vo(k = +1)
roc? (n — 1/2)*n’K? n*m?h?
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2_232 2_232
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—mgpC 2m0C (1 + m) 2m()C (1 + —W

n=12,3,... (mycRo/R) > 1

the s states, which can be understood intuitively because of the orbital angular
momentum [ = 1 for the p states. But even for the s states (with [ = 0), for a
given Ry a minimal potential depth Vj is required in order to get at least one bound
state, in contrast to the one-dimensional problem, where at least one bound state
always exists. This is due to the fact that for the s state of a Dirac particle in a
three-dimensional potential well there is an angular momentum barrier due to the
spin. Indeed, this can be easily seen by decoupling (14), differentiating again with
constant Vj and reinserting:

1 1
9" - {W [(E + Vo)? — mgc*] — M}gzo :

r2
f"+{m [(E+Vo) —moc]——r-z— f=0 . 32)
On the one hand, for s states (x = —1) the angular momentum barrier is zero

for the large components. On the other, the equation for f contains an angular
momentum term, which increases the energy in the three-dimensional case even
for s states.

In Fig.9.11 the eigenvalues’ [found numerically from (27)] for the 1s state in
potential wells with different values of Ry have been plotted. One sees that for
(mocRo/h) < 1 as well as for (mocRo/h) > 1 the energy eigenvalue E (Vo) grows
almost linerarly with Vy. As in the one-dimensional case, we can determine the
scattering phase shifts of the continuum. For the s waves this can be done with
little effort, whereas for the waves with higher angular momentum the matching
condition at r = R, cannot be evaluated easily. Let us therefore look at the scat-
tering phase shifts of the s waves. First we have to match solutions of the interior
region,

ui(r) =a sin kir y

o E + Vo — mpc? [sinkr
i(r) = —ayy/ —coskir ) 33
uy(r) oz I V— ( o cos r) (33)

at r = Ry to the solution ((fick,)> = E? — mc*) of the outside region:

7 From J. Rafelski, L. Fulcher, A. Klein: Phys. Rep. 38, 227 (1978).



