
5 General Relativity with Tetrads

5.1 Concept Questions

1. The vierbein has 16 degrees of freedom instead of the 10 degrees of freedom of the
metric. What do the extra 6 degrees of freedom correspond to?

2. Tetrad transformations are defined to be Lorentz transformations. Don’t general co-
ordinate transformations already include Lorentz transformations as a particular case,
so aren’t tetrad transformations redundant?

3. What does coordinate gauge-invariant mean? What does tetrad gauge-invariant mean?

4. Is the coordinate metric gµν tetrad gauge-invariant?

5. What does a directed derivative ∂m mean physically?

6. Is the directed derivative ∂m coordinate gauge-invariant?

7. What is the tetrad-frame 4-velocity um of a person at rest in an orthonormal tetrad
frame?

8. If the tetrad frame is accelerating (not in free-fall) does the 4-velocity um of a person
continuously at rest in the tetrad frame change with time? Is it true that ∂tu

m = 0?
Is it true that Dtu

m = 0?

9. If the tetrad frame is accelerating, do the tetrad axes γm change with time? Is it true
that ∂tγm = 0? Is it true that Dtγm = 0?

10. If an observer is accelerating, do the observer’s locally inertial rest axes γm change
along the observer’s wordline? Is it true that ∂tγm = 0? Is it true that Dtγm = 0?

11. If the tetrad frame is accelerating, does the tetrad metric γmn change with time? Is it
true that ∂tγmn = 0? Is it true that Dtγmn = 0?

12. If the tetrad frame is accelerating, do the covariant components um of the 4-velocity
of a person continuously at rest in the tetrad frame change with time? Is it true that
∂tum = 0? Is it true that Dtum = 0?

13. Suppose that p = γmpm is a 4-vector. Is the proper rate of change of the proper
components pm measured by an observer equal to the directed time derivative ∂tp

m or
to the covariant time derivative Dtp

m? What about the covariant components pm of
the 4-vector? [Hint: The proper contravariant components of the 4-vector measured
by an observer are pm ≡ γm · p where γm are the contravariant locally inertial rest
axes of the observer. Similarly the proper covariant components are pm ≡ γm · p.]

1



14. A person with two eyes separated by proper distance δξn observes an object. The
observer observes the photon 4-vector from the object to be pm. The observer uses
the difference δpm in the two 4-vectors detected by the two eyes to infer the binocular
distance to the object. Is the difference δpm in photon 4-vectors detected by the two
eyes equal to the directed derivative δξn∂npm or to the covariant derivative δξnDnpm?

15. What does parallel-transport mean?

16. Suppose that pm is a tetrad 4-vector. Parallel-transport the 4-vector by an infinitesimal
proper distance δξn. Is the change in pm measured by an ensemble of observers at rest in
the tetrad frame equal to the directed derivative δξn∂npm or to the covariant derivative
δξnDnpm? [Hint: What if “rest” means that the observer at each point is separately
at rest in the tetrad frame at that point? What if “rest” means that the observers are
mutually at rest relative to each other in the rest frame of the tetrad at one particular
point?]

17. What is the physical significance of the fact that directed derivatives fail to commute?

18. Physically, what do the tetrad connection coefficients Γkmn mean?

19. What is the physical significance of the fact that Γkmn is antisymmetric in its first two
indices (if the tetrad metric γmn is constant)?

20. Are the tetrad connections Γkmn coordinate gauge-invariant?

21. Explain how the equation for the Gullstrand-Painlevé metric in Cartesian coordinates
xµ ≡ {tff , x, y, z}

ds2 = dt2ff − δij(dxi − βidtff)(dxj − βjdtff) (1)

encodes not merely a metric but a full vierbein.

22. In what sense does the Gullstrand-Painlevé metric (1) depict a flow of space? [Are the
coordinates moving? If not, then what is moving?]

23. If space has no substance, what does it mean that space falls into a black hole?

24. Would there be any gravitational field in a spacetime where space fell at constant
velocity instead of accelerating?

25. In spherically symmetric spacetimes, what is the most important Einstein equation,
the one that causes Reissner-Nordström black holes to be repulsive in their interiors,
and causes mass inflation in non-empty (non Reissner-Nordström) charged black holes?
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5.2 What’s important?

This section of the notes describes the tetrad formalism of GR.

1. Why tetrads? Because physics is clearer in a locally inertial frame than in a coordinate
frame.

2. The primitive object in the tetrad formalism is the vierbein em
µ, in place of the metric

in the coordinate formalism.

3. Written suitably, for example as equation (1), a metric ds2 encodes not only the metric
coefficients gµν , but a full (inverse) vierbein em

µ, through ds2 = γmn em
µdxµ en

νdxν .

4. The tetrad road from vierbein to energy-momentum is similar to the coordinate road
from metric to energy-momentum, albeit a little more complicated.

5. In the tetrad formalism, the directed derivative ∂m is the analog of the coordinate
partial derivative ∂/∂xµ of the coordinate formalism. Directed derivatives ∂m do not
commute, whereas coordinate derivatives ∂/∂xµ do commute.
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5.3 Tetrad

A tetrad (Greek foursome) γm(x) is a set of axes

γm ≡ {γ0, γ1, γ2, γ3} (2)

attached to each point xµ of spacetime. The common case is that of an orthonormal tetrad,
where the axes form a locally inertial frame at each point, so that the scalar products of the
axes constitute the Minkowski metric ηmn

γm · γn = ηmn . (3)

However, other tetrads prove useful in appropriate circumstances. There are spinor tetrads,
null tetrads (notably the Newman-Penrose double null tetrad), and others (indeed, the basis
of coordinate tangent vectors gµ is itself a tetrad). In general, the tetrad metric is some
symmetric matrix γmn

γm · γn ≡ γmn . (4)

Associated with the tetrad frame at each point is a local set of coordinates

ξm ≡ {ξ0, ξ1, ξ2, ξ3} . (5)

Unlike the coordinates xµ of the background geometry, the local coordinates ξm do not
extend beyond the local frame at each point. A coordinate interval is

dx = γm dξm (6)

and the scalar spacetime distance is

ds2 = dx · dx = γmn dξmdξn . (7)

Andrew’s convention:
Latin dummy indices label tetrad frames.
Greek dummy indices label coordinate frames.

Why introduce tetrads?

1. The physics is more transparent when expressed in a locally inertial frame (or some
other frame adapted to the physics), as opposed to the coordinate frame, where Sal-
vador Dali rules.

2. If you want to consider spin-1
2

particles and quantum physics, you better work with
tetrads.

3. For good reason, much of the GR literature works with tetrads, so it’s useful to under-
stand them.
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5.4 Vierbein

The vierbein (German four-legs) em
µ is defined to be the matrix that transforms between

the tetrad frame and the coordinate frame (note the placement of indices: the tetrad index
m comes first, then the coordinate index µ)

γm = em
µ gµ . (8)

The vierbein is a 4 × 4 matrix, with 16 independent components. The inverse vierbein em
µ

is defined to be the matrix inverse of the vierbein em
µ, so that

em
µ em

ν = δν
µ , em

µ en
µ = δn

m . (9)

Thus equation (8) inverts to

gµ = em
µ γm . (10)

5.5 The metric encodes the vierbein

The scalar spacetime distance is

ds2 = γmn em
µdxµ en

νdxν = gµν dxµ dxν (11)

from which it follows that the coordinate metric gµν is

gµν = γmn em
µ en

ν . (12)

The shorthand way in which metric’s are commonly written encodes not only a metric but
also an inverse vierbein, hence a tetrad. For example, the Schwarzschild metric

ds2 =

(

1 − 2M

r

)

dt2 −
(

1 − 2M

r

)−1

dr2 − r2dθ2 − r2 sin2θ dφ2 (13)

encodes the inverse vierbein

et
µdxµ =

(

1 − 2M

r

)1/2

dt , (14a)

er
µdxµ =

(

1 − 2M

r

)−1/2

dr , (14b)

eθ
µdxµ = r dθ , (14c)

eφ
µdxµ = r sin θ dφ , (14d)

Explicitly, the inverse vierbein of the Schwarzschild metric is is the diagonal matrix

em
µ =









(1 − 2M/r)1/2 0 0 0
0 (1 − 2M/r)−1/2 0 0
0 0 r 0
0 0 0 r sin θ









. (15)
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5.6 Tetrad transformations

Tetrad transformations are defined to be Lorentz transformations. The Lorentz transfor-
mation may be a different transformation at each point. Tetrad transformations rotate the
tetrad axes γk at each point by a Lorentz transformation Lk

m, while keeping the background
coordinates xµ unchanged:

γk → γ ′
k = Lk

m γm . (16)

In the case that the tetrad axes γk are orthonormal, with a Minkowski metric, the Lorentz
transformation matrices Lk

m in equation (16) take the familiar special relativistic form, but
the linear matrices Lk

m in equation (16) signify a Lorentz transformation in any case.

Whether or not the tetrad axes are orthonormal, Lorentz transformations are precisely those
transformations that leave the tetrad metric unchanged

γ′
kl = γ ′

k · γ ′
l = Lk

mLl
n γm · γn = Lk

mLl
n γmn = γkl . (17)

5.7 Tetrad Tensor

In general, a tetrad-frame tensor Akl...
mn... is an object that transforms under tetrad (Lorentz)

transformations (16) as

A′kl...
mn... = Lk

aL
l
b ... Lm

cLn
d ... Aab...

cd... . (18)

5.8 Raising and lowering indices

In the coordinate approach to GR, coordinate indices were lowered and raised with the
coordinate metric gµν and its inverse gµν . In the tetrad formalism there are two kinds of
indices, tetrad indices and coordinate indices, and they flip around as follows:

1. Lower and raise coordinate indices with the coordinate metric gµν and its inverse gµν ;
2. Lower and raise tetrad indices with the tetrad metric γmn and its inverse γmn;
3. Switch between coordinate and tetrad frames with the vierbein em

µ and its inverse
em

µ.

The kinds of objects for which this flippery is valid are called tensors. Tensors with only
tetrad indices, such as the tetrad axes γm or the tetrad metric γmn are called tetrad tensors,
and they remain unchanged under coordinate transformations. Tensors with only coordinate
indices, such as the coordinate tangent axes gµ or the coordinate metric gµν , are called
coordinate tensors, and they remain unchanged under tetrad transformations. Tensors may
also be mixed, such as the vierbein em

µ.

5.9 Gauge transformations

Gauge transformations are transformations of the coordinates or tetrad. Such transfor-
mations do not change the underlying spacetime.

6



Quantities that are unchanged by a coordinate transformation are coordinate gauge-

invariant. Quantities that are unchanged under a tetrad transformation are tetrad gauge-

invariant. For example, tetrad tensors are coordinate gauge-invariant, while coordinate
tensors are tetrad gauge-invariant.

Tetrad transformations have the 6 degrees of freedom of Lorentz transformations, with 3
degrees of freedom in spatial rotations, and 3 more in Lorentz boosts. General coordinate
transformations have 4 degrees of freedom. Thus there are 10 degrees of freedom in the
choice of tetrad and coordinate system. The 16 degrees of freedom of the vierbein, minus
the 10 degrees of freedom from the transformations of the tetrad and coordinates, leave 6
physical degrees of freedom in spacetime, the same as in the coordinate approach to GR,
which is as it should be.

5.10 Directed derivatives

Directed derivatives ∂m are defined to be the directional derivatives along the axes γm

∂m ≡ γm · ∂ = γm · gµ ∂

∂xµ
= em

µ ∂

∂xµ
is a tetrad-frame 4-vector . (19)

The directed derivative ∂m is independent of the choice of coordinates, as signaled by the
fact that it has only a tetrad index, no coordinate index.

Unlike coordinate derivatives ∂/∂xµ, directed derivatives ∂m do not commute. Their com-
mutator is

[∂m, ∂n] =

[

em
µ ∂

∂xµ
, en

ν ∂

∂xν

]

= em
µ ∂en

ν

∂xµ

∂

∂xν
− en

ν ∂em
µ

∂xν

∂

∂xµ

= (dk
nm − dk

mn) ∂k is not a tensor (20)

where dlmn ≡ γlk dk
mn is the vierbein derivative

dlmn ≡ γlk ek
κ en

ν ∂em
κ

∂xν
is not a tensor . (21)

Since the vierbein and inverse vierbein are inverse to each other, an equivalent definition of
dlmn in terms of the inverse vierbein is

dlmn ≡ − γlk em
µ en

ν ∂ek
µ

∂xν
is not a tensor . (22)

5.11 Tetrad covariant derivative

The derivation of tetrad covariant derivatives Dm follows precisely the analogous derivation
of coordinate covariant derivatives Dµ. The tetrad-frame formulae look entirely similar to
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the coordinate-frame formulae, with the replacement of coordinate partial derivatives by
directed derivatives, ∂/∂xµ → ∂m, and the replacement of coordinate-frame connections
by tetrad-frame connections Γκ

µν → Γk
mn. There are two things to be careful about: first,

unlike coordinate partial derivatives, directed derivatives ∂m do not commute; and second,
neither tetrad-frame nor coordinate-frame connections are tensors, and therefore it should be
no surprise that the tetrad-frame connections Γlmn are not related to the coordinate-frame
connections Γλµν by the ‘usual’ vierbein transformations. Rather, the tetrad and coordinate
connections are related by equation (32).

If Φ is a scalar, then ∂mΦ is a tetrad 4-vector. The tetrad covariant derivative of a scalar is
just the directed derivative

DmΦ = ∂mΦ is a 4-vector . (23)

If Am is a tetrad 4-vector, then ∂nAm is not a tensor, and ∂nAm is not a tensor. But the
4-vector A = γmAm, being by construction invariant under both tetrad and coordinate
transformations, is a scalar, and its directed derivative is therefore a 4-vector

∂nA = ∂n(γmAm) is a 4-vector

= γm∂nA
m + (∂nγm)Am

= γm∂nA
m + Γk

mnγk Am (24)

where the tetrad-frame connection coefficients, Γk
mn, also known as Ricci rotation co-

efficients (or, in the context of Newman-Penrose tetrads, spin coefficients) are defined by

∂nγm ≡ Γk
mn γk is not a tensor . (25)

Equation (24) shows that
∂nA = γk(DnA

k) is a tensor (26)

where DnA
k is the covariant derivative of the contravariant 4-vector Ak

DnAk ≡ ∂nAk + Γk
mnA

m
is a tensor . (27)

Similarly,
∂nA = γk(DnAk) (28)

where DnAk is the covariant derivative of the covariant 4-vector Ak

DnAk ≡ ∂nAk − Γm
knAm is a tensor . (29)

In general, the covariant derivative of a tensor is

DaA
kl...
mn... = ∂aA

kl...
mn... + Γk

baA
bl...
mn... + Γl

baA
kb...
mn... + ... − Γb

maA
kl...
bn... − Γb

naA
kl...
mb... − ... (30)

with a positive Γ term for each contravariant index, and a negative Γ term for each covariant
index.
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5.12 Relation between tetrad and coordinate connections

The relation between the tetrad connections Γk
mn and their coordinate counterparts Γκ

µν

follows from

Γk
mnγk = ∂nγm = en

µ ∂em
κgκ

∂xν
is not a tensor

= en
µ ∂em

κ

∂xν
gκ + en

µ em
κ ∂gκ

∂xν

= dkmn ekκ gκ + en
µ em

κ Γλ
κν gλ . (31)

Thus the relation is

Γlmn − dlmn = el
λ em

µ en
ν Γλµν is not a tensor (32)

where
Γlmn ≡ γlk Γk

mn . (33)

5.13 Torsion tensor

The torsion tensor Sm
kl , which GR assumes to vanish, is defined in the usual way by the

commutator of the covariant derivative acting on a scalar Φ

[Dk, Dl] Φ = Sm
kl ∂mΦ is a tensor . (34)

The expression (29) for the covariant derivatives coupled with the commutator (20) of di-
rected derivatives shows that the torsion tensor is

Sm
kl = Γm

kl − Γm
lk − dm

kl + dm
lk is a tensor (35)

where dm
kl are the vierbein derivatives defined by equation (21). The torsion tensor Sm

kl is
antisymmetric in k ↔ l, as is evident from its definition (34).

5.14 No-torsion condition

GR assumes vanishing torsion. Then equation (35) implies the no-torsion condition

Γmkl − dmkl = Γmlk − dmlk is not a tensor . (36)

In view of the relation (32) between tetrad and coordinate connections, the no-torsion con-
dition (36) is equivalent to the usual symmetry condition Γµκλ = Γµλκ on the coordinate
frame connections, as it should be.
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5.15 Antisymmetry of the connection coefficients

The directed derivative of the tetrad metric is

∂nγlm = ∂n(γl · γm)

= γl · ∂nγm + γm · ∂nγl

= Γlmn + Γmln . (37)

In the great majority of cases, the tetrad metric is chosen to be a constant. This is true
for example if the tetrad is orthonormal, so that the tetrad metric is the Minkowski metric.
If the tetrad metric is constant, then all derivatives of the tetrad metric vanish, and then
equation (37) shows that the tetrad connections are antisymmetric in their first two indices

Γlmn = −Γmln . (38)

This antisymmetry reflects the fact that Γlmn is the generator of a Lorentz transformation
for each n.

5.16 Connection coefficients in terms of the vierbein

In the general case of non-constant tetrad metric, and non-vanishing torsion, the following
manipulation

∂nγlm + ∂mγln − ∂lγmn = Γlmn + Γmln + Γlnm + Γnlm − Γmnl − Γnml (39)

= 2 Γlmn − Slmn − Smnl − Snml − dlmn + dlnm − dmnl + dmln − dnml + dnlm

implies that the tetrad connections Γlmn are given in terms of the derivatives ∂nγlm of the
tetrad metric, the torsion Slmn, and the vierbein derivatives dlmn by

Γlmn =
1

2
(∂nγlm + ∂mγln − ∂lγmn + Slmn + Smnl + Snml

+ dlmn − dlnm + dmnl − dmln + dnml − dnlm) is not a tensor . (40)

If torsion vanishes, as GR assumes, and if furthermore the tetrad metric is constant, then
equation (40) simplifies to the following expression for the tetrad connections in terms of the
vierbein derivatives dlmn defined by (21)

Γlmn =
1

2
(dlmn − dlnm + dmnl − dmln + dnml − dnlm) is not a tensor . (41)

This is the formula that allows connection coefficients to be calculated from the vierbein.

5.17 Riemann curvature tensor

The Riemann curvature tensor Rklmn is defined in the usual way by the commutator of
the covariant derivative acting on a contravariant 4-vector

[Dk, Dl]Am = RklmnAn
is a tensor . (42)
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THE DEPENDENCE ON TORSION IS WRONG. IT SHOULD AGREE WITH EQ (105)
IN THE COORDINATE FORMALISM.

The expression (29) for the covariant derivative coupled with the torsion equation (34)
yields the following formula for the Riemann tensor in terms of connection coefficients, for
the general case of non-vanishing torsion:

Rklmn = ∂kΓmnl − ∂lΓmnk + Γa
mlΓank − Γa

mkΓanl + (Γa
kl − Γa

lk − Sa
kl)Γmna is a tensor . (43)

The formula has the extra terms (Γa
kl − Γa

lk − Sa
kl)Γmna compared to the usual formula for

the coordinate-frame Riemann tensor Rκλµν . If torsion vanishes, as GR assumes, then

Rklmn = ∂kΓmnl − ∂lΓmnk + Γa
mlΓank − Γa

mkΓanl + (Γa
kl − Γa

lk)Γmna is a tensor . (44)

The symmetries of the tetrad-frame Riemann tensor are the same as those of the coordinate-
frame Riemann tensor. For vanishing torsion, these are

R([kl][mn]) , (45)

Rklmn + Rknlm + Rkmnl = 0 . (46)

5.18 Ricci, Einstein, Weyl, Bianchi

The usual suite of formulae leading to Einstein’s equations apply. Since all the quantities
are tensors, and all the equations are tensor equations, their form follows immediately from
their coordinate counterparts.

Ricci tensor:
Rkm ≡ γlnRklmn . (47)

Ricci scalar:
R ≡ γkmRkm . (48)

Einstein tensor:

Gkm ≡ Rkm − 1

2
Rγkm . (49)

Einstein’s equations:
Gkm = 8πGTkm . (50)

Weyl tensor:

Cklmn ≡ Rklmn − 1

2
(γkmRln − γknRlm + γlnRkm − γlmRkn) +

1

6
(γkmγln − γknγlm) . (51)

Bianchi identities:
DkRlmnp + DlRmknp + DmRklnp = 0 , (52)

which most importantly imply covariant conservation of the Einstein tensor, hence conser-
vation of energy-momentum

DkTkm = 0 . (53)
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5.19 Electromagnetism

5.19.1 Electromagnetic field

The electromagnetic field is a bivector field (an antisymmetric tensor) F mn whose 6 com-
ponents comprise the electric field E = Ei and magnetic field B = Bi. In an orthonormal
tetrad,

F mn =









0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0









. (54)

5.19.2 Lorentz force law

In the presence of an electromagnetic field F mn, the general relativistic equation of motion
for the 4-velocity um ≡ dxm/dτ of a particle of mass m and charge q is modified by the
addition of a Lorentz force qF m

nun

m
Dum

Dτ
= qF m

nun . (55)

In the absence of gravitational fields, so D/Dτ = d/dτ , and with um = ut{1, v} where v is the
3-velocity, the spatial components of equation (55) reduce to [note that d/dt = (1/ut)d/dτ ]

m
dui

dt
= q (E + v × B) i = 1, 2, 3 (56)

which is the classical special relativistic Lorentz force law. The signs in the expression (54)
for F mn in terms of E = Ei and B = Bi are arranged to agree with the classical law (56).

5.19.3 Maxwell’s equations

The source-free Maxwell’s equations are

DlF mn + DmF nl + DnF lm = 0 , (57)

while the soured Maxwell’s equations are

DmF mn = 4πjn , (58)

where jn is the electric 4-current. The sourced Maxwell’s equations (58) coupled with the
antisymmetry of the electromagnetic field tensor F mn ensure conservation of electric charge

Dnjn = 0 . (59)
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5.19.4 Electromagnetic energy-momentum tensor

The energy-momentum tensor of an electromagnetic field F mn is

Tmn
e =

1

4π

(

−F m
kF

nk +
1

4
γmnFklF

kl

)

. (60)

5.20 Gullstrand-Painlevé river

The aim of this section is to show rigorously how the Gullstrand-Painlevé metric paints a
picture of space falling like a river into a Schwarzschild or Reissner-Nordström black hole.
The river has two key features: first, the river flows in Galilean fashion through a flat Galilean
background; and second, as a freely-falling fishy swims through the river, its 4-velocity, or
more generally any 4-vector attached to it, evolves by a series of infinitesimal Lorentz boosts
induced by the change in the velocity of the river from place to place. Because the river
moves in Galilean fashion, it can, and inside the horizon does, move faster than light through
the background coordinates. However, objects moving in the river move according to the
rules of special relativity, and so cannot move faster than light through the river.

Figure 1: The fish upstream can make way against the current, but the fish downstream is
swept to the bottom of the waterfall.

5.20.1 Gullstrand-Painlevé-Cartesian coordinates

In place of a polar coordinate system, introduce a Cartesian coordinate system xµ ≡ {tff , xi} ≡
{tff , x, y, z}. The Gullstrand-Painlevé metric in these Cartesian coordinates is

ds2 = dt2ff − δij(dxi − βidtff)(dxj − βjdtff) (61)
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with implicit summation over spatial indices i, j = x, y, z. The βi in the metric (61) are the
components of the radial infall velocity expressed in Cartesian coordinates

βi = β
{x

r
,
y

r
,
z

r

}

. (62)

Physically, tff is the proper time experienced by observers who free-fall radially from zero
velocity at infinity, and βi constitute the spatial components of their 4-velocity

βi =
dxi

dtff
. (63)

For the Schwarzschild or Reissner-Nordström geometry, the infall velocity is

β = −
√

2M(r)

r
(64)

where M(r) is the interior mass within radius r, which is the mass M at infinity minus the
mass Q2/2r in the electric field outside r,

M(r) = M − Q2

2r
. (65)

The Gullstrand-Painlevé metric (61) encodes an inverse vierbein em
µ through

ds2 = ηmn em
µ en

ν dxµ dxν . (66)

The vierbein em
µ and inverse vierbein em

µ are explicitly

em
µ =









1 βx βy βz

0 1 0 0
0 0 1 0
0 0 0 1









, em
µ =









1 0 0 0
−βx 1 0 0
−βy 0 1 0
−βz 0 0 1









. (67)

5.20.2 Gullstrand-Painlevé-Cartesian tetrad

The tetrad and coordinate axes of the Gullstrand-Painlevé tetrad are related to each other
by

γm = em
µ gµ , gµ = em

µ γm . (68)

Explicitly, the tetrad axes γm are related to the coordinate tangent axes gµ by

γtff = gtff + βigi , γi = gi . (69)

Physically, the Gullstrand-Painlevé tetrad (69) are the axes of locally inertial orthonormal
frames that coincide with the axes of the Cartesian rest frame at infinity, and are attached to
observers who free-fall radially, without rotating, starting from zero velocity and zero angular
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Horizon

Inner horizon

Outer horizon

Turnaround

Figure 2: Velocity fields in (upper panel) a Schwarzschild black hole, and (lower panel) a
Reissner-Nordström black hole with electric charge Q = 0.96.
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momentum at infinity. The fact that the tetrad axes γm are parallel-transported, without
precessing, along the worldlines of the radially free-falling observers can be confirmed by
checking that

dγm

dtff
= uν ∂γm

∂xν
= 0 (70)

where uν ≡ dxν/dtff = {1, βi} is the coordinate 4-velocity of the radially free-falling ob-
servers.

Remarkably, the transformation (69) from coordinate to tetrad axes is just a Galilean trans-
formation of space and time, which shifts the time axis by velocity β along the direction of
motion, but which leaves unchanged both the time component of the time axis and all the
spatial axes. In other words, the black hole behaves as if it were a river of space that flows
radially inward through Galilean space and time at the Newtonian escape velocity.

5.20.3 Gullstrand-Painlevé fishies

The non-zero tetrad connection coefficients corresponding to the Gullstrand-Painlevé vier-
bein (67) prove to be given by the gradient of the infall velocity

Γtff
ij =

∂βi

∂xj
(i, j = x, y, z) . (71)

Consider a fishy swimming in the Gullstrand-Painlevé river, with some arbitrary 4-velocity
um, and consider a 4-vector pk attached to the fishy. If the fishy is following a geodesic, then
the equation of motion for pk is

dpk

dτ
+ Γk

mnunpm = 0 . (72)

With the connections (71), the equation of motion (72) translates to (the following equations
assume implicit summation over repeated spatial indices, even though the indices are not
always one up one down)

dptff

dτ
= − ∂βi

∂xj
ujpi ,

dpi

dτ
= − ∂βi

∂xj
ujptff . (73)

In a small time δτ , the fishy moves a proper distance δξm ≡ umδτ relative to the infalling
river. This proper distance δξm = em

µδx
µ = δm

µ (δxµ − βµδtff) = δxm − βmδτ equals the
distance δxm moved relative to the background Gullstrand-Painlevé-Cartesian coordinates,
minus the distance βmδτ moved by the river. From the fishy’s perspective, the velocity of
the river changes during this motion by an amount

δβi = δξj ∂βi

∂xj
(74)

in which the sum over j can be taken over spatial indices only because, thanks to time
translation symmetry, the velocity βi has no explicit dependence on time tff . According to
the equation of motion (73), the 4-vector pk changes by

ptff → ptff − δβi pi , pi → pi − δβi ptff . (75)
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But this is nothing more than an infinitesimal Lorentz boost by a velocity change δβi. This
shows that a fishy swimming in the river follows the rules of special relativity, being Lorentz
boosted by tidal changes δβi in the river velocity from place to place.

Is it correct to interpret equation (74) as giving the change δβi in the river velocity seen by
a fishy? Shouldn’t the change in the river velocity really be

δβi ?
= δxν ∂βi

∂xν
(76)

where δxν is the full change in the coordinate position of the fishy? The answer is no. Part
of the change (76) in the river velocity can be attributed to the change in the velocity of
the river itself over the time δτ , which is δxν

river∂βi/∂xν with δxν
river = βνδτ = βνδtff . The

change in the velocity relative to the flowing river is

δβi = (δxν − δxν
river)

∂βi

∂xν
= (δxν − βνδtff)

∂βi

∂xν
(77)

which reproduces the earlier expression (74). Indeed, in the picture of fishies being carried by
the river, it is essential to subtract the change in velocity of the river itself, as in equation (77),
because otherwise fishies at rest in the river (going with the flow) would not continue to
remain at rest in the river.

5.21 Doran river

The picture of space falling into a black hole like a river works also for rotating black holes.
For Kerr-Newman rotating black holes, the counterpart of the Gullstrand-Painlevé metric is
the Doran (2000) metric.

The river that falls into a rotating black hole has a mind-bending twist. One might have
expected that the rotation of the black hole would be reflected by an infall velocity that spirals
inward, but this is not the case. Instead, the river is characterized not merely by a velocity
but also by a twist. The velocity and the twist together comprise a 6-dimensional river
bivector ωkm, equation (89) below, whose electric part is the velocity, and whose magnetic
part is the twist. Recall that the 6-dimensional group of Lorentz transformations is generated
by a combination of 3-dimensional Lorentz boosts and 3-dimensional spatial rotations. A
fishy that swims through the river is Lorentz boosted by tidal changes in the velocity, and
rotated by tidal changes in the twist, equation (98).

Thanks to the twist, unlike the Gullstrand-Painlevé metric, the Doran metric is not spatially
flat at constant free-fall time tff . Rather, the spatial metric is sheared in the azimuthal
direction. Just as the velocity produces a Lorentz boost that makes the metric non-flat with
respect to the time components, so also the twist produces a rotation that makes the metric
non-flat with respect to the spatial components.

5.21.1 Doran-Cartesian coordinates

In place of the polar coordinates {r, θ, φff} of the Doran metric, introduce corresponding
Doran-Cartesian coordinates {x, y, z} with z taken along the rotation axis of the black hole
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(the black hole rotates right-handedly about z, for positive spin parameter a)

x ≡ R sin θ cos φff , y ≡ R sin θ sin φff , z ≡ r cos θ . (78)

The metric in Doran-Cartesian coordinates xµ ≡ {tff , xi} ≡ {tff , x, y, z}, is

ds2 = dt2ff − δij

(

dxi − βiακdxκ
) (

dxj − βjαλdxλ
)

(79)

where αµ is the rotational velocity vector

αµ =
{

1,
ay

R2
,−ax

R2
, 0
}

, (80)

and βµ is the infall velocity vector

βµ =
βR

ρ

{

0,
xr

Rρ
,

yr

Rρ
,
zR

rρ

}

. (81)

The rotational velocity and infall velocity vectors are orthogonal

αµβ
µ = 0 . (82)

For the Kerr-Newman metric, the infall velocity β is

β = ∓
√

2Mr − Q2

R
(83)

with − for black hole (infalling), + for white hole (outfalling) solutions. Horizons occur
where |β| = 1, with β = −1 for black hole horizons, β = 1 for white hole horizons.

The Doran-Cartesian metric (79) encodes a vierbein em
µ and inverse vierbein em

µ

em
µ = δµ

m + αmβµ , em
µ = δm

µ − αµβm . (84)

Here the tetrad-frame components αm of the rotational velocity vector and βm of the infall
velocity vector are

αm = em
µαµ = δµ

mαµ , βm = em
µβ

µ = δm
µ βµ , (85)

which works thanks to the orthogonality (82) of αµ and βµ. Equation (85) says that the
covariant tetrad-frame components of the rotational velocity vector α are the same as its
covariant coordinate-frame components in the Doran-Cartesian coordinate system, αm = αµ,
and likewise the contravariant tetrad-frame components of the infall velocity vector β are
the same as its contravariant coordinate-frame components, βm = βµ.
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Figure 3: (Upper panel) velocity βi and (lower panel) twist µi vector fields for a Kerr black
hole with spin parameter a = 0.96. Both vectors lie, as shown, in the plane of constant
free-fall azimuthal angle φff .
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5.21.2 Doran-Cartesian tetrad

Like the Gullstrand-Painlevé tetrad, the Doran-Cartesian tetrad γm ≡ {γtff , γx, γy, γz} is
aligned with the Cartesian rest frame at infinity, and is parallel-transported, without pre-
cessing, by observers who free-fall from zero velocity and zero angular momentum at infinity.
Let ‖ and ⊥ subscripts denote horizontal radial and azimuthal directions respectively, so
that

γ‖ ≡ cos φff γx + sin φff γy , γ⊥ ≡ − sin φff γx + cos φff γy ,

g‖ ≡ cos φff gx + sin φff gy , g⊥ ≡ − sin φff gx + cos φff gy .
(86)

Then the relation between Doran-Cartesian tetrad axes γm and the tangent axes gµ of the
Doran-Cartesian metric (79) is

γtff = gtff + βigi , (87a)

γ‖ = g‖ , (87b)

γ⊥ = g⊥ − a sin θ

R
βigi , (87c)

γz = gz . (87d)

The relations (87) resemble those (69) of the Gullstrand-Painlevé tetrad, except that the
azimuthal tetrad axis γ⊥ is shifted radially relative to the azimuthal tangent axis g⊥. This
shift reflects the fact that, unlike the Gullstrand-Painlevé metric, the Doran metric is not
spatially flat at constant free-fall time.

5.21.3 Doran fishies

The tetrad-frame connections equal the ordinary partial derivatives in Doran-Cartesian co-
ordinates of a bivector (antisymmetric tensor) ωkm

Γkmn = − ∂ωkm

∂xn
(88)

which I call the river field because it encapsulates all the properties of the infalling river of
space. The bivector river field ωkm is

ωkm = αkβm − αmβk + εtffkmi ζ
i (89)

where βm = ηmnβ
m, the totally antisymmetric tensor εklmn is normalized so that εtffxyz = −1,

and the vector ζ i points vertically upward along the rotation axis of the black hole

ζ i ≡ {0, 0, 0, ζ} , ζ ≡ a

∫ r

∞

β dr

R2
. (90)

The electric part of ωkm, where one of the indices is time tff , constitutes the velocity vector
βi

ωtff i = βi (91)

20



while the magnetic part of ωkm, where both indices are spatial, constitutes the twist vector
µi defined by

µi ≡ 1
2
εtff ikmωkm = εtff ikmαkβm + ζ i . (92)

The sense of the twist is that induces a right-handed rotation about an axis equal to the
direction of µi by an angle equal to the magnitude of µi. In 3-vector notation, with µ ≡ µi,
α ≡ αi, β ≡ βi, ζ ≡ ζ i,

µ ≡ α × β + ζ . (93)

In terms of the velocity and twist vectors, the river field ωkm is

ωkm =









0 −βx −βy −βz

βx 0 −µz µy

βy µz 0 −µx

βz −µy µx 0









. (94)

Note that the sign of the electric part β of ωkm is opposite to the sign of the analogous
electric field E associated with an electromagnetic field Fkm; but the adopted signs are
natural in that the river field induces boosts in the direction of the velocity βi, and right-
handed rotations about the twist µi. Like a static electric field, the velocity vector βi is the
gradient of a potential

βi =
∂

∂xi

∫ r

β dr , (95)

but unlike a magnetic field the twist vector µi is not pure curl: rather, it is µi + ζ i that is
pure curl.

With the tetrad connection coefficients given by equation (88), the equation of motion (72)
for a 4-vector pk attached to a fishy following a geodesic in the Doran river translates to

dpk

dτ
=

∂ωk
m

∂xn
unpm . (96)

In a proper time δτ , the fishy moves a proper distance δξm ≡ umδτ relative to the background
Doran-Cartesian coordinates. As a result, the fishy sees a tidal change δωk

m in the river
field

δωk
m = δξn∂ωk

m

∂xn
. (97)

Consequently the 4-vector pk is changed by

pk → pk + δωk
m pm . (98)

But equation (98) corresponds to a Lorentz boost by δβi and a rotation by δµi.

As discussed previously with regard to the Gullstrand-Painlevé river, §5.20.3, the tidal change
δωk

m, equation (97), in the river field seen by a fishy is not the full change δxν ∂ωk
m/∂xν

relative to the background coordinates, but rather the change relative to the river

δωk
m = (δxν − δxν

river)
∂ωk

m

∂xν
=
[

δxν − βν(δtff − a sin2θ δφff)
] ∂ωk

m

∂xν
(99)

with the change in the velocity and twist of the river itself subtracted off.
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5.22 Boyer-Lindquist tetrad

The Kerr-Newman metric has a special orthonormal tetrad, aligned with the (ingoing or
outgoing) principal null congruences, with respect to which the electromagnetic, energy-
momentum, and Weyl tensors take particularly simple forms. The tetrad is the Boyer-
Linquist orthonormal tetrad, encoded in the Boyer-Lindquist metric

ds2 =
∆

ρ2

(

dt − a sin2θ dφ
)2 − ρ2

∆
dr2 − ρ2dθ2 − R4 sin2θ

ρ2

(

dφ − a

R2
dt
)2

(100)

where

R ≡
√

r2 + a2 , ρ ≡
√

r2 + a2 cos2θ , ∆ ≡ R2 − 2Mr + Q2 = R2(1 − β2) . (101)

Explicitly, the vierbein em
µ of the Boyer-Linquist orthonormal tetrad is

em
µ =









R/
[

ρ(1−β2)1/2
]

0 0 a/
[

Rρ(1−β2)1/2
]

0 R(1−β2)1/2/ρ 0 0
0 0 1/ρ 0

a sin θ/ρ 0 0 1/ (ρ sin θ)









, (102)

with inverse vierbein em
µ

em
µ =









R(1−β2)1/2/ρ 0 0 − aR sin2θ(1−β2)1/2/ρ
0 ρ/

[

R(1−β2)1/2
]

0 0
0 0 ρ 0

− a sin θ/ρ 0 0 R2 sin θ/ρ









. (103)

With respect to this tetrad, only the radial electric field Er and magnetic field Br are non-
vanishing, and they are given by the complex combination

Er + i Br =
Q

(r − ia cos θ)2
, (104)

or explicitly

Er =
Q (r2−a2 cos2θ)

ρ4
, Br =

2Qar cos θ

ρ4
. (105)

The electrogmagnetic field (104) satisfies Maxwell’s equations (57) and (58) with zero electric
current, jn = 0.

The non-vanishing components of the tetrad-frame Einstein tensor Gmn are

Gmn =
Q2

ρ4









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1









. (106)
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The non-vanishing components of the tetrad-frame Weyl tensor Cklmn are

− 1
2
Ctrtr = 1

2
Cθφθφ = Ctθtθ = Ctφtφ = −Crθrθ = −Crφrφ = ReC , (107a)

1
2
Ctrθφ = Ctθrφ = −Ctφrθ = Im C , (107b)

where C is the complex Weyl scalar

C = − 1

(r − ia cos θ)3

(

M − Q2

r + ia cos θ

)

. (108)
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5.23 General spherically symmetric spacetime

Even in so simple a case as a general spherically symmetric spacetime, it is not an easy
matter to find a physically illuminating form of the Einstein equations. The following is the
best that I know of.

5.23.1 Tetrad and vierbein

Choose the tetrad γm to be orthonormal, meaning that the scalar products of the tetrad axes
constitute the Minkowski metric, γm · γn = ηmn. Choose polar coordinates xµ ≡ {t, r, θ, φ}.
Let r be the circumferential radius, so that the angular part of the metric is r2do2, which is
a gauge-invariant definition of r. Choose the transverse tetrad axes γθ and γφ to be aligned
with the transverse coordinate axes gθ and gφ. Orthonormality requires

γθ =
1

r
gθ , γφ =

1

r sin θ
gφ . (109)

So far all the choices have been standard and natural. Now for some less standard choices.
Choose the radial tetrad axis γr to be aligned with the radial coordinate axis gr

γr = βr gr (110)

where βr(t, r) is some arbitrary function of coordinate time t and radius r (the reason for
the subscript r on βr will become apparent momentarily). More generally, the radial tetrad
axis γr could be taken to be some combination of the time and radial coordinate axes gt and
gr, but the choice (110) can always be effected by a suitable radial Lorentz boost. These
choices (109)–(110) exhaust the Lorentz freedoms in the choice of tetrad. The tetrad time
axis γt must be some combination of the time and radial coordinate axes gt and gr

γt =
1

α
gt + βt gr (111)

where α(t, r) and βt(t, r) are some arbitrary functions of coordinate time t and radius r.
Equations (109)–(111) imply that the vierbein em

µ and its inverse em
µ have been chosen to

be

em
µ =









1/α βt 0 0
0 βr 0 0
0 0 1/r 0
0 0 0 1/(r sin θ)









, em
µ =









α 0 0 0
−α βt/βr 1/βr 0 0

0 0 r 0
0 0 0 r sin θ









.

(112)
The directed derivatives ∂t and ∂r along the time and radial tetrad axes γt and γr are

∂t = et
µ ∂

∂xµ
=

1

α

∂

∂t
+ βt

∂

∂r
, ∂r = er

µ ∂

∂xµ
= βr

∂

∂r
. (113)

The tetrad-frame 4-velocity um of a person at rest in the tetrad frame is by definition
um = {1, 0, 0, 0}. It follows that the coordinate 4-velocity uµ of such a person is

uµ = em
µum = et

µ = {1/α, βt, 0, 0} . (114)
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The directed time derivative ∂t is just the proper time derivative along the worldline of a
person continuously at rest in the tetrad frame (and who is therefore not in free-fall, but
accelerating with the tetrad frame), which follows from

d

dτ
=

dxµ

dτ

∂

∂xµ
= uµ ∂

∂xµ
= um∂m = ∂t . (115)

By contrast, the proper time derivative measured by a person who is instantaneously at rest
in the tetrad frame, but is in free-fall, is the covariant time derivative

D

Dτ
=

dxµ

dτ
Dµ = uµDµ = umDm = Dt . (116)

Since the coordinate radius r has been defined to be the circumferential radius, a gauge-
invariant definition, it follows that the tetrad-frame gradient ∂m of the coordinate radius r
is a tetrad-frame 4-vector (a coordinate gauge-invariant object)

∂mr = em
µ ∂r

∂xµ
= em

r = βm = {βt, βr, 0, 0} is a tetrad 4-vector . (117)

This accounts for the notation βt and βr introduced above. Since βm is a tetrad 4-vector, its
scalar product with itself must be a scalar. This scalar defines the interior mass M(t, r),
also called the Misner-Sharp mass, by

1 − 2M

r
≡ −βmβm = −β2

t + β2
r is a coordinate and tetrad scalar . (118)

The interpretation of M as the interior mass will become evident below, §5.23.9.

5.23.2 Coordinate metric

The coordinate metric ds2 = ηmne
m

µe
n

νdxµdxν corresponding to the vierbein (112) is

ds2 = α2dt2 − 1

β2
r

(dr − βt α dt)2 − r2do2 . (119)

A person instantaneously at rest in the tetrad frame satisfies dr/dt = βt α according to
equation (114), so it follows from the metric (119) that the proper time τ of a person at rest
in the tetrad frame is related to the coordinate time t by

dτ = α dt in tetrad rest frame . (120)

The metric (119) is a bit unconventional in that it is not diagonal: gtr does not vanish.
However, there are two good reasons to consider a non-diagonal metric. First, as discussed
in §5.23.12, Einstein’s equations take a more insightful form when expressed in a non-diagonal
frame where βt does not vanish, such as in the center-of-mass frame. Second, if a horizon
is present, as in the case of black holes, and if the radial coordinate is taken to be the
circumferential radius r, then a diagonal metric will have a coordinate singularity at the
horizon, which is not ideal.
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5.23.3 Rest diagonal coordinate metric

Although this is not the choice adopted here, the metric (119) can always be brought to
diagonal form by a coordinate transformation t → t× (subscripted × for diagonal) of the
time coordinate. The t–r part of the metric is

gtt dt2 + 2 gtr dt dr + grr dr2 =
1

gtt

[

(gtt dt + gtr dr)2 + (gttgrr − g2
tr)dr2

]

. (121)

This can be diagonalized by choosing the time coordinate t× such that

f dt× = gtt dt + gtr dr (122)

for some integrating factor f(t, r). Equation (122) can be solved by choosing t× to be
constant along integral curves

dr

dt
= − gtt

gtr
. (123)

The resulting diagonal metric is

ds2 = α2
×dt2× − dr2

1 − 2M/r
− r2do2 . (124)

The metric (124) corresponds physically to the case where the tetrad frame is taken to be
at rest in the spatial coordinates, βt = 0, as can be seen by comparing it to the earlier
metric (119). The metric coefficient grr in the metric (124) follows from the fact that β2

r =
1 − 2M/r when βt = 0, equation (118). The transformed time coordinate t× is unspecified
up to a transformation t× → f(t×). If the spacetime is asymptotically flat at infinity, then a
natural way to fix the transformation is to choose t× to be the proper time at rest at infinity.

5.23.4 Comoving diagonal coordinate metric

The metric (119) can also be brought to diagonal form by a coordinate transformation
r → r×, where, analogously to equation (122), r× is chosen to satisfy

f dr× = gtr dt + grr dr (125)

for some integrating factor f(t, r). The new coordinate r× is constant along the worldline
of an object at rest in the tetrad frame, so r× can be regarded as a kind of Lagrangian
coordinate. For example, r× could be chosen equal to the circumferential radius r at some
fixed instant of coordinate time t (say t = 0). The metric in this Lagrangian coordinate
system takes the form

ds2 = α2dt2 − λ2dr2
× − r2do2 (126)

where the circumferential radius r(t, r×) is considered to be an implicit function of t and the
Lagrangian radial coordinate r×. However, this is not the path followed in these notes.
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5.23.5 Tetrad connections

Now turn the handle to proceed towards the Einstein equations. The tetrad connections
coefficients Γkmn are

Γtrt = g , (127a)

Γtrr = h , (127b)

Γtθθ = Γtφφ =
βt

r
, (127c)

Γrθθ = Γrφφ =
βr

r
, (127d)

Γθφφ =
cot θ

r
, (127e)

where g is the proper radial acceleration (minus the gravitational force) experienced by a
person at rest in the tetrad frame

g ≡ ∂r ln α , (128)

and h is the “Hubble parameter” of the radial flow, as measured in the tetrad rest frame,
defined by

h ≡ βt
∂ ln α

∂r
+

∂βt

∂r
− ∂t ln βr . (129)

The interpretation of g as a proper acceleration and h as a radial Hubble parameter goes as
follows. The tetrad-frame 4-velocity um of a person at rest in the tetrad frame is by definition
um = {1, 0, 0, 0}. If the person at rest were in free fall, then the proper acceleration would be
zero, but because this is a general spherical spacetime, the tetrad frame is not necessarily in
free fall. The proper acceleration experienced by a person continuously at rest in the tetrad
frame is the proper time derivative Dum/Dτ of the 4-velocity, which is

Dum

Dτ
= unDnu

m = utDtu
m = ut

(

∂tu
m + Γm

tt u
t
)

= Γm
tt = {0, Γr

tt, 0, 0} = {0, g, 0, 0} . (130)

Similarly, a person at rest in the tetrad frame will measure the 4-velocity of an adjacent
person at rest in the tetrad frame a small proper radial distance δξr away to differ by
δξrDru

m. The Hubble parameter of the radial flow is thus the covariant radial derivative
Dru

m, which is

Dru
m = ∂ru

m + Γm
tru

t = Γm
tr = {0, Γr

tr, 0, 0} = {0, h, 0, 0} . (131)

Since h is a kind of radial Hubble parameter, it can be useful to define a corresponding radial
scale factor λ by

h ≡ ∂t ln λ . (132)

The scale factor λ is the same as the λ in the comoving coordinate metric of equation (126).
This is true because h is a tetrad connection and therefore coordinate gauge-invariant, and
the metric (126) is related to the metric (119) being considered by a coordinate transforma-
tion r → r×.
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5.23.6 Riemann and Weyl tensors

The non-vanishing components of the tetrad-frame Riemann tensor Rklmn are

Rtrtr = ∂th − ∂rg + h2 − g2 , (133a)

Rtθtθ = Rtφtφ =
1

r
(∂tβt − βrg) , (133b)

Rrθrθ = Rrφrφ =
1

r
(∂rβr − βth) , (133c)

Rtθrθ = Rtφrφ = Rrθtθ = Rrφtφ =
1

r
(∂tβr − βtg) =

1

r
(∂rβt − βrh) , (133d)

Rθφθφ = − 2M

r3
. (133e)

The non-vanishing components of the tetrad frame Weyl tensor Cklmn are

− 1
2
Ctrtr = 1

2
Cθφθφ = Ctθtθ = Ctφtφ = −Crθrθ = −Crφrφ = C (134)

where C is the Weyl scalar

C ≡ 1

6
(−Rtrtr + Rtθtθ − Rrθrθ + Rθφθφ) =

1

6

(

Gtt − Grr + Gθθ
)

− M

r3
. (135)

5.23.7 Einstein equations

The non-vanishing components of the tetrad-frame Einstein tensor Gkm are

Gtr = 2 Rtθrθ , (136a)

Gtt = − 2 Rrθrθ − Rθφθφ , (136b)

Grr = − 2 Rtθtθ + Rθφθφ , (136c)

Gθθ = Gφφ = −Rtrtr − Rtθtθ + Rrθrθ , (136d)

whence

Gtr =
2

r
(∂tβr − βtg) (137a)

=
2

r
(∂rβt − βrh) , (137b)

Gtt =
2

r

(

− ∂rβr + βth +
M

r2

)

, (137c)

Grr =
2

r

(

− ∂tβt + βrg − M

r2

)

, (137d)

Gθθ = Gφφ =
1

r
∂r (rg + βr) −

1

r
∂t (rh + βt) + g2 − h2 . (137e)

The Einstein equations in the tetrad frame

Gkm = 8πT km (138)
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imply that








Gtt Gtr 0 0
Gtr Grr 0 0
0 0 Gθθ 0
0 0 0 Gφφ









= 8πT mn = 8π









ρ f 0 0
f p 0 0
0 0 p⊥ 0
0 0 0 p⊥









(139)

where ρ ≡ T tt is the proper energy density, f ≡ T tr is the proper radial energy flux, p ≡ T rr

is the proper radial pressure, and p⊥ ≡ T θθ = T φφ is the proper transverse pressure.

5.23.8 Choose your frame

So far the radial motion of the tetrad frame has been left unspecified. Any arbitrary choice
can be made. For example, the tetrad frame could be chosen to be at rest,

βt = 0 , (140)

as in the Schwarzschild or Reissner-Nordström metrics. Alternatively, the tetrad frame could
be chosen to be in free-fall,

g = 0 , (141)

as in the Gullstrand-Painlevé metric. For situations where the spacetime contains matter,
perhaps the most natural choice is the center-of-mass frame, defined to be the frame in
which the energy flux f is zero

Gtr = 8πf = 0 . (142)

Whatever the choice of radial tetrad frame, tetrad-frame quantities in different radial tetrad
frames are related to each other by a radial Lorentz boost.

5.23.9 Interior mass

Equations (137c) with (137a), and (137d) with (137b), respectively, along with the defini-
tion (118) of the interior mass M , and the Einstein equations (139), imply

p =
1

βt

(

− 1

4πr2
∂tM − βrf

)

, (143a)

ρ =
1

βr

(

1

4πr2
∂rM − βtf

)

. (143b)

In the center-of-mass frame, f = 0, these equations reduce to

∂tM = − 4πr2βt p , (144a)

∂rM = 4πr2βr ρ . (144b)

Equations (144) amply justify the interpretation of M as the interior mass. The first equa-
tion (144a) can be written

∂tM + p 4πr2∂tr = 0 (145)
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which can be recognized as an expression of the first law of thermodynamics

dE + p dV = 0 (146)

with mass-energy E equal to M . The second equation (144b) can be written, since ∂r =
βr ∂/∂r, equation (113),

∂M

∂r
= 4πr2ρ (147)

which looks exactly like the Newtonian relation between interior mass M and density ρ.
Actually, this apparently Newtonian equation (147) is a bit deceiving. The proper 3-volume
element d3r in the center-of-mass frame is given by (in a notation that is not yet familiar,
but clearly has a high class pedigree)

d3r γr ∧ γθ ∧ γφ = gr dr ∧ gθ dθ ∧ gφ dφ =
r2 sin θ dr dθ dφ

βr
γr ∧ γθ ∧ γφ (148)

so that the proper 3-volume element dV of a radial shell of width dr is

dV =
4πr2dr

βr
. (149)

Thus the “true” mass-energy dMm associated with the proper density ρ in a proper radial
volume element dV might be expected to be

dMm = ρ dV =
4πr2dr

βr

(150)

whereas equation (147) indicates that the actual mass-energy is

dM = ρ 4πr2dr = βr ρ dV . (151)

A person in the center-of-mass frame might perhaps, although there is really no formal
justification for doing so, interpret the balance of the mass-energy as gravitational mass-
energy Mg

dMg = (βr − 1)ρ dV . (152)

Whatever the case, the moral of this is that you should beware of interpreting the interior
mass M too literally as palpable mass-energy.
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5.23.10 Energy-momentum conservation

Covariant conservation of the Einstein tensor DmGmn = 0 implies energy-momentum con-
servation DmTmn = 0. The two non-vanishing equations represent conservation of energy
and of radial momentum, and are

DmTmt = ∂tρ +
2βt

r
(ρ + p⊥) + h (ρ + p) +

(

∂r +
2βr

r
+ 2 g

)

f = 0 , (153a)

DmTmr = ∂rp +
2βr

r
(p − p⊥) + g (ρ + p) +

(

∂t +
2βt

r
+ 2 h

)

f = 0 . (153b)

In the center-of-mass frame, f = 0, these energy-momentum conservation equations reduce
to

∂tρ +
2βt

r
(ρ + p⊥) + h (ρ + p) = 0 , (154a)

∂rp +
2βr

r
(p − p⊥) + g (ρ + p) = 0 . (154b)

In a general situation where the mass-energy is the sum over several individual components
a,

Tmn =
∑

species a

Tmn
a , (155)

the individual mass-energy components a of the system each satisfy an energy-momentum
conservation equation of the form

DmTmn
a = F n

a (156)

where F n
a is the flux of energy into component a. Einstein’s equations enforce energy-

momentum conservation of the system as a whole, so the sum of the energy fluxes must be
zero

∑

species a

F n
a = 0 . (157)

5.23.11 First law of thermodynamics

For an individual species a, the energy conservation equation (153a) in the center-of-mass
frame of the species can be written

DmTmt
a = ∂tρa + (ρa + p⊥a)∂t ln r2 + (ρa + pa)∂t ln λa = F t

a (158)

where λa is the radial “scale factor”, equation (132), in the center-of-mass frame of the
species (the scale factor is different in different frames). Equation (158) can be recognized
as an expression of the first law of thermodynamics for a volume element V of species a, in
the form

V −1
[

∂t(ρaV ) + p⊥a Vr ∂tV⊥ + pa V⊥ ∂tVr

]

= F t
a (159)
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with transverse volume (area) V⊥ ∝ r2, radial volume (width) Vr ∝ λa, and total volume
V ∝ V⊥Vr. The flux F t

a on the right hand side is the heat per unit volume per unit time
going into species a. If the pressure of species a is isotropic, p⊥a = pa, then equation (159)
simplifies to

V −1
[

∂t(ρaV ) + pa ∂tV
]

= F t
a (160)

with volume V ∝ r2λa.

5.23.12 Structure of the Einstein equations

The spherically symmetric spacetime under consideration is described by 3 vierbein (or
metric) coefficients, α, βt, and βr. However, some combination of the 3 coefficients represents
a gauge freedom, since the spherically symmetric spacetime has only two physical degrees
of freedom. As commented in §5.23.8, various gauge-fixing choices can be made, such as
choosing to work in the center-of-mass frame, f = 0.

Equations (137) give 5 equations for the 4 non-vanishing components of the Einstein tensor
in terms of the vierbein coefficients, but only 4 of the equations are independent, since the 2
equations for Gtr are equivalent by the definitions (128) and (129) of g and h. Conservation
of energy-momentum of the system as a whole is built in to the Einstein equations, a conse-
quence of the Bianchi identities, so 2 of the Einstein equations are effectively equivalent to
the energy-momentum conservation equations (153). In the general case where the matter
contains multiple components, it is usually a good idea to include the equations describing
the conservation or exchange of energy-momentum separately for each component, so that
global conservation of energy-momentum is then satisfied as a consequence of the matter
equations.

This leaves 2 independent Einstein equations to describe the 2 physical degrees of the space-
time. The 2 equations may be taken to be the evolution equations (137a) and (137d) for βt

and βr

Dtβt = ∂tβt − βrg = − M

r2
− 4πrp , (161a)

Dtβr = ∂tβr − βtg = 4πrf , (161b)

which are valid for any choice of tetrad frame, not just the center-of-mass frame.

Equation (161a) is perhaps the single most important of the general relativistic equations
governing spherically symmetric spacetimes, because it is this equation that is responsi-
ble (to the extent that equations may be considered responsible) for the strange inter-
nal structure of Reissner-Nordström black holes, and for mass inflation. The coefficient
βt equals the coordinate radial 4-velocity dr/dτ = ∂tr = βt of the tetrad frame, equa-
tion (114), and thus equation (161a) can be regarded as giving the proper radial acceleration
D2r/Dτ 2 = Dβt/Dτ = Dtβt of the tetrad frame as measured by a person who is in free-fall
and instantaneously at rest in the tetrad frame. If the acceleration is measured by an ob-
server who is continuously at rest in the tetrad frame (as opposed to being in free-fall), then

32



the proper acceleration is ∂tβt, which contains an extra term βrg compared to Dtβt. The
presence of this extra term, proportional to the proper acceleration g actually experienced
by the observer continuously at rest in the tetrad frame, reflects the principle of equivalence
of gravity and acceleration.

The right hand side of equation (161a) can be interpreted as the radial gravitational force,
which consists of 2 terms. The first term, −M/r2, looks like the familiar Newtonian gravi-
tational force, which is attractive (negative, inward) in the usual case of positive mass M .
But it is the second term, −4πrp, proportional to the radial pressure p, that is the source of
fun. In a Reissner-Nordström black hole, the negative radial pressure produced by the radial
electric field produces a radial gravitational repulsion (positive, outward), according to equa-
tion (161a), and this repulsion dominates the gravitational force at small radii, producing
an inner horizon. Again, in mass inflation, the (positive) radial pressure of relativistically
counter-streaming ingoing and outgoing streams just above the inner horizon dominates the
gravitational force (inward), and it is this that drives mass inflation.

5.23.13 Comment on the vierbein coefficient α

Whereas the Einstein equations (161) give evolution equations for the vierbein coefficients
βt and βr, there is no evolution equation for the vierbein coefficient α. Indeed, the Einstein
equations involve the vierbein coefficient α only in the combination g ≡ ∂r lnα. This reflects
the fact that, even after the tetrad frame is fixed, there is still a coordinate freedom t → t′(t)
in the choice of coordinate time t. Under such a gauge transformation, α transforms as
α → α′ = f(t) α where f(t) = ∂t/∂t′ is an arbitrary function of coordinate time t. Only
g ≡ ∂r ln α is independent of this coordinate gauge freedom, and thus only g appears in the
tetrad-frame Einstein equations.

Since α is needed to propagate the equations from one coordinate time to the next [because
∂t = (1/α) ∂/∂t + βt ∂/∂r], it is necessary to construct α by integrating g ≡ βr ∂ ln α/∂r
along the radial direction r at each time step. The arbitrary normalization of α at each step
might be fixed by choosing α to be unity at infinity, which corresponds to fixing the time
coordinate t to equal the proper time at infinity.

In the particular case that the tetrad frame is taken to be in free-fall everywhere, g = 0, as in
the Gullstrand-Painlevé metric, then α is constant at fixed t, and without loss of generality
it can be fixed equal to unity everywhere, α = 1. I like to think of a free-fall frame as being
realized physically by tracer “dark matter” particles that fall radially (from zero velocity,
typically) at infinity, and stream freely, without interacting, through any actual matter that
may be present.
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5.24 Spherical electromagnetic field

The internal structure of a charged black hole resembles that of a rotating black hole because
the negative pressure (tension) of the radial electric field produces a gravitational repulsion
analogous to the centrifugal repulsion in a rotating black hole. Since it is much easier to
deal with spherical than rotating black holes, it is common to use charge as a surrogate for
rotation in exploring black holes.

5.24.1 Electromagnetic field

The assumption of spherical symmetry means that any electromagnetic field can consist only
of a radial electric field (in the absence of magnetic monopoles). The only non-vanishing
components of the electromagnetic field Fmn are then

−F tr = F rt = E =
Q

r2
(162)

where E is the radial electric field, and Q(t, r) is the interior electric charge. Equation (162)
can be regarded as defining what is meant by the electric charge Q interior to radius r at
time t.

5.24.2 Maxwell’s equations

A radial electric field automatically satisfies two of Maxwell’s equations, the source-free
ones (57). For the radial electric field (162), the other two Maxwell’s equations, the sourced
ones (58), are

∂rQ = 4πr2q (163a)

∂tQ = −4πr2j (163b)

where q ≡ jt is the proper electric charge density and j ≡ jr is the proper radial electric
current density in the tetrad frame.

5.24.3 Electromagnetic energy-momentum tensor

For the radial electric field (162), the electromagnetic energy-momentum tensor (60) in the
tetrad frame is the diagonal tensor

Tmn
e =

Q2

8πr4









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1









. (164)

The radial electric energy-momentum tensor is independent of the radial motion of the tetrad
frame, which reflects the fact that the electric field is invariant under a radial Lorentz boost.
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The energy density ρe and radial and transverse pressures pe and p⊥e of the electromagnetic
field are the same as those from a spherical charge distribution with interior electric charge
Q in flat space

ρe = −pe = p⊥e =
Q2

8πr4
=

E2

8π
. (165)

The non-vanishing components of the covariant derivative DmTmn
e of the electromagnetic

energy-momentum (164) are

DmTmt
e = ∂tρe +

4βt

r
ρe =

Q

4πr4
∂tQ = − jQ

r2
= − jE , (166a)

DmTmr
e = ∂rpe +

4βr

r
pe = − Q

4πr4
∂rQ = − qQ

r2
= − qE . (166b)

The first expression (166a), which gives the rate of energy transfer out of the electromagnetic
field as the current density j times the electric field E, is the same as in flat space. The
second expression (166b), which gives the rate of transfer of radial momentum out of the
electromagnetic field as the charge density q times the electric field E, is the Lorentz force
on a charge density q, and again is the same as in flat space.

5.25 General relativistic stellar structure

A star can be well approximated as static as well as spherically symmetric. In this case
all time derivatives can be taken to vanish, ∂/∂t = 0, and, since the center-of-mass frame
coincides with the rest frame, it is natural to choose the tetrad frame to be at rest, βt = 0.
Equation (161b) then vanishes identically, while the acceleration equation (161a) becomes

βrg =
M

r2
+ 4πrp , (167)

which expresses the proper acceleration g in the rest frame in terms of the familiar Newtonian
gravitational force M/r2 plus a term 4πrp proportional to the radial pressure. The radial
pressure, if positive as is the usual case for a star, enhances the inward gravitational force,
helping to destabilize the star. Because βt is zero, the interior mass M given by equation (118)
reduces to

1 − 2M/r = β2
r . (168)

When equations (167) and (168) are substituted into the momentum equation (153b), and
if the pressure is taken to be isotropic, so p⊥ = p, the result is the Oppenheimer-Volkov

equation for general relativistic hydrostatic equilibrium

∂p

∂r
= − (ρ + p)(M + 4πr3p)

r2(1 − 2M/r)
. (169)

In the Newtonian limit p ≪ ρ and M ≪ r this goes over to (with units restored)

∂p

∂r
= − ρ

GM

r2
, (170)

which is the usual Newtonian equation of spherically symmetric hydrostatic equilibrium.
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5.26 Self-similar spherically symmetric spacetime

Even with the assumption of spherical symmetry, it is by no means easy to solve the system
of partial differential equations that comprise the Einstein equations coupled to mass-energy
of various kinds. One way to simplify the system of equations, transforming them into
ordinary differential equations, is to consider self-similar solutions.

5.26.1 Self-similarity

The assumption of self-similarity (also known as homothety, if you can pronounce it) is the
assumption that the system possesses conformal time translation invariance. This implies
that there exists a conformal time coordinate η such that the geometry at any one time is
conformally related to the geometry at any other time

ds2 = a(η)2
[

g(c)
ηη (x) dη2 + 2 g(c)

ηx (x) dη dx + g(c)
xx (x) dx2 − e2x do2

]

. (171)

Here the conformal metric coefficients g
(c)
µν (x) are functions only of conformal radius x, not

of conformal time η. The choice e2x of coefficient of do2 is a gauge choice of the conformal
radius x, carefully chosen here so as to bring the self-similar metric into a form (176) below
that resembles as far as possible the spherical metric (119). In place of the conformal factor
a(η) it is convenient to work with the circumferential radius r

r ≡ a(η)ex (172)

which is to be considered as a function r(η, x) of the coordinates η and x. The circumferential
radius r has a gauge-invariant meaning, whereas neither a(η) nor x are independently gauge-
invariant. The conformal factor r has the dimensions of length. In self-similar solutions,
all quantities are proportional to some power of r, and that power can be determined by
dimensional analysis. Quantites that depend only on the conformal radial coordinate x,
independent of the circumferential radius r, are called dimensionless.

The fact that dimensionless quantities such as the conformal metric coefficients g
(c)
µν (x) are

independent of conformal time η implies that the tangent vector gη, which by definition
satisfies

∂

∂η
= gη · ∂ , (173)

is a conformal Killing vector, also known as the homothetic vector. The tetrad-frame
components of the conformal Killing vector gη defines the tetrad-frame conformal Killing
4-vector ξm

∂

∂η
≡ r ξm∂m , (174)

in which the factor r is introduced so as to make ξm dimensionless. The conformal Killing
vector gη is the generator of the conformal time translation symmetry, and as such it is
gauge-invariant (up to a global rescaling of conformal time, η → bη for some constant b).
It follows that its dimensionless tetrad-frame components ξm constitute a tetrad 4-vector
(again, up to global rescaling of conformal time).
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5.26.2 Vierbein

The self-similar vierbein em
µ and its inverse em

µ can be taken to be of the same form as
before, equations (112), but it is convenient to make the dependence on the dimensionless
conformal Killing vector ξm manifest:

em
µ =

1

r









1/ξη −βx ξx/ξη 0 0
0 βx 0 0
0 0 1 0
0 0 0 1/ sin θ









, em
µ = r









ξη 0 0 0
ξx 1/βx 0 0
0 0 1 0
0 0 0 sin θ









. (175)

It is straightforward to see that the coordinate time components of the inverse vierbein must
be em

η = r ξm, since ∂/∂η = em
η ∂m equals r ξm∂m, equation (174).

5.26.3 Coordinate metric

The coordinate metric ds2 = ηmne
m

µe
n

νdxµdxν corresponding to the vierbein (175) is

ds2 = r2

[

(ξη dη)2 − 1

β2
x

(dx + βx ξxdη)2 − do2

]

. (176)

5.26.4 Tetrad-frame scalars and vectors

Since the conformal factor r is gauge-invariant, the directed gradient ∂mr constitutes a tetrad-
frame 4-vector βm (which unlike ξm is independent of any global rescaling of conformal time)

βm ≡ ∂mr . (177)

It is straightforward to check that βx defined by equation (177) is consistent with its appear-
ance in the vierbein (175) provided that r ∝ ex as earlier assumed, equation (172).

With two distinct dimensionless tetrad 4-vectors in hand, βm and the conformal Killing
vector ξm, three gauge-invariant dimensionless scalars can be constructed, βmβm, ξmβm, and
ξmξm,

1 − 2M

r
= βmβm = −β2

η + β2
x , (178)

v ≡ ξmβm =
1

r

∂r

∂η
=

1

a

∂a

∂η
, (179)

∆ ≡ ξmξm = (ξη)2 − (ξx)2 . (180)

Equation (178) is essentially the same as equation (118).

The dimensionless quantity v, equation (179), may be interpreted as a measure of the expan-
sion velocity of the self-similar spacetime. Equation (179) shows that v is a function only of
η (since a(η) is a function only of η), and it therefore follows that v must be constant (since
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being dimensionless means that v must be a function only of x). Equation (179) then also
implies that the conformal factor a(η) must take the form

a(η) = evη . (181)

Because of the freedom of a global rescaling of conformal time, it is possible to set v = 1
without loss of generality, but in practice it is convenient to keep v, because it is then
transparent how to take the static limit v → 0. Equation (181) along with (172) shows that
the circumferentaial radius r is related to the conformal coordinates η and x by

r = evη+x . (182)

The dimensionsless quantity ∆, equation (180), is the dimensionless horizon function: hori-
zons occur where the horizon function vanishes

∆ = 0 at horizons . (183)

5.26.5 Diagonal coordinate metric of the similarity frame

The metric (176) can be brought to diagonal form by a coordinate transformation to diagonal
conformal coordinates η×, x× (subscripted × for diagonal)

η → η× = η + f(x) , x → x× = x − vf(x) , (184)

which leaves unchanged the conformal factor r, equation (182). The resulting diagonal metric
is

ds2 = r2

(

∆ dη2
× − dx2

×

1 − 2M/r + v
2/∆

− do2

)

. (185)

The diagonal metric (185) corresponds physically to the case where the tetrad frame is at
rest in the similarity frame, ξx = 0, as can be seen by comparing it to the metric (176). The
frame can be called the similarity frame. The form of the metric coefficients follows from
the metric (176) and the gauge-invariant scalars (178)–(180).

The conformal Killing vector in the similarity frame is ξm = {∆1/2, 0, 0, 0}, and the 4-velocity
of the similarity frame in its own frame is um = {1, 0, 0, 0}. Since both are tetrad 4-vectors,
it follows that with respect to a general tetrad frame

ξm = um ∆1/2 (186)

where um is the 4-velocity of the similarity frame with respect to the general frame. This
shows that the conformal Killing vector ξm in a general tetrad frame is proportional to the 4-
velocity of the similarity frame through the tetrad frame. In particular, the proper 3-velocity
of the similarity frame through the tetrad frame is

proper 3-velocity of similarity frame through tetrad frame =
ξx

ξη
. (187)
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5.26.6 Ray-tracing metric

It proves useful to introduce a “ray-tracing” conformal radial coordinate X related to the
coordinate x× of the diagonal metric (185) by

dX ≡ ∆ dx×

[(1 − 2M/r)∆ + v
2]1/2

. (188)

In terms of the ray-tracing coordinate X, the diagonal metric is

ds2 = r2

(

∆ dη2
× − dX2

∆
− do2

)

. (189)

For the Reissner-Nordström geometry, ∆ = (1 − 2M/r)/r2, η× = t, and X = −1/r.

5.26.7 Geodesics

Spherical symmetry and conformal time translation symmetry imply that geodesic motion
in spherically symmetric self-similar spacetimes is described by a complete set of integrals
of motion.

The integral of motion associated with conformal time translation symmetry can be obtained
from Lagrange’s equations of motion

d

dτ

∂L
∂uη

=
∂L
∂η

(190)

with effective Lagrangian L = gµνu
µuν for a particle with 4-velocity uµ. The self-similar

metric depends on the conformal time η only through the overall conformal factor gµν ∝ a2.
The derivative of the conformal factor is given by ∂ ln a/∂η = v, equation (179), so it follows
that ∂L/∂η = 2 vL. For a massive particle, for which conservation of rest mass implies
gµνu

µuν = 1, Lagrange’s equations (190) thus yield

duη

dτ
= v . (191)

In the limit of zero accretion rate, v → 0, equation (191) would integrate to give uη as
a constant, the energy per unit mass of the geodesic. But here there is conformal time
translation symmetry in place of time translation symmetry, and equation (191) integrates
to

uη = v τ (192)

in which an arbitrary constant of integration has been absorbed into a shift in the zero point
of the proper time τ . Although the above derivation was for a massive particle, it holds
also for a massless particle, with the understanding that the proper time τ is constant along
a null geodesic. The quantity uη in equation (192) is the covariant time component of the
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coordinate-frame 4-velocity uµ of the particle; it is related to the covariant components um

of the tetrad-frame 4-velocity of the particle by

uη = em
η um = r ξmum . (193)

Without loss of generality, geodesic motion can be taken to lie in the equatorial plane θ =
π/2. The integrals of motion associated with conformal time translation symmetry, rotational
symmetry about the polar axis, and conservation of rest mass, are, for a massive particle

uη = v τ , uφ = −L , uµu
ν = 1 , (194)

where L is the orbital angular momentum per unit rest mass of the particle. The coordinate
4-velocity uµ ≡ dxµ/dτ that follows from equations (194) takes its simplest form in the
conformal coordinates {η×, X, θ, φ} of the ray-tracing metric (189)

uη
× =

v τ

r2∆
, uX = ± 1

r2

[

v
2τ 2 − (r2 + L2)∆

]1/2
, uφ =

L

r2
. (195)

5.26.8 Null geodesics

The important case of a massless particle follows from taking the limit of a massive particle
with infinite energy and angular momentum, v τ → ∞ and L → ∞. To obtain finite results,
define an affine parameter λ by dλ ≡ v τ dτ , and a 4-velocity in terms of it by vµ ≡ dxµ/dλ.
The integrals of motion (194) then become, for a null geodesic,

vη
×

= 1 , vφ = −J , vµv
ν = 0 , (196)

where J ≡ L/(v τ) is the (dimensionless) conformal angular momentum of the particle. The
4-velocity vµ along the null geodesic is then, in terms of the coordinates of the ray-tracing
metric (189),

vη =
1

r2∆
, vX = ± 1

r2

(

1 − J2∆
)1/2

, vφ =
J

r2
. (197)

Equations (197) yield the shape of a null geodesic by quadrature

φ =

∫

J dX

(1 − J2∆)1/2
. (198)

Equation (198) shows that the shape of null geodescics in spherically symmetric self-similar
spacetimes hinges on the behavior of the dimensionless horizon function ∆(X) as a function
of the dimensionless ray-tracing variable X.

Null geodesics go through periapsis or apoapsis in the self-similar frame where the denomi-
nator of the integrand of (198) is zero, corresponding to vX = 0. A photon sphere, where null
geodesics circle for ever at constant conformal coordinate X, occurs where the denominator
not only vanishes but is an extremum, which happens where the horizon function ∆ is an
extremum,

d∆

dX
= 0 at photon sphere . (199)
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5.26.9 Dimensional analysis

Dimensional analysis shows that the conformal coordinates xµ ≡ {η, x, θ, φ}, the tetrad
metric γmn, and the coordinate metric gµν are all dimensionless

xµ , γmn , gµν are dimensionless . (200)

The vierbein em
µ and inverse vierbein em

µ, equations (175), scale as

em
µ ∝ r−1 , em

µ ∝ r . (201)

Coordinate derivatives ∂/∂xµ are dimensionless, while directed derivatives ∂m scale as 1/r

∂

∂xµ
∝ r0 , ∂m ∝ r−1 . (202)

The tetrad connections Γkmn and the tetrad-frame Riemann tensor Rklmn scale as

Γkmn ∝ r−1 , Rklmn ∝ r−2 . (203)

5.26.10 Variety of self-similar solutions

Self-similar solutions exist provided that the properties of the energy-momentum introduce
no additional dimensional parameters. For example, the pressure-to-density ratio w ≡ p/ρ
of any species is dimensionless, and since the ratio can depend only on the nature of the
species itself, not for example on where it happens to be located in the spacetime, it follows
that the ratio w must be a constant. It is legitimate for the pressure-to-density ratio to
be different in the radial and transverse directions (as it is for a radial electric field), but
otherwise self-similarity requires that

w ≡ p/ρ , w⊥ ≡ p⊥/ρ , (204)

be constants for each species. For example, w = 1 for a massless scalar field, w = 1/3 for a
relativistic fluid, w = 0 for pressureless cold dark matter, w = −1 for vacuum energy, and
w = −1 with w⊥ = 1 for a radial electric field.

Self-similarity allows that the energy-momentum may consist of several distinct components,
such as a relativistic fluid, plus dark matter, plus an electric field. The components may
interact with each other provided that the properties of the interaction introduce no ad-
ditional dimensional parameters. For example, the relativistic fluid (and the dark matter)
may be charged, and if so then the charged fluid will experience a Lorentz force from the
electric field, and will therefore exchange momentum with the electric field. If the fluid is
non-conducting, then there is no dissipation, and the interaction between the charged fluid
and electric field automatically introduces no additional dimensional parameters.

However, if the charged fluid is electrically conducting, then the electrical conductivity could
potentially introduce an additional dimensional parameter, and this must not be allowed if
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self-similarity is to be maintained. In diffusive electrical conduction in a fluid of conductivity
σ, an electric field E gives rise to a current

j = σE , (205)

which is just Ohm’s law. Dimensional analysis shows that j ∝ r−2 and E ∝ r−1, so the
conductivity must scale as σ ∝ r−1. The conductivity can depend only on the intrinsic
properties of the conducting fluid, and the only intrinsic property available is its density,
which scales as ρ ∝ r−2. If follows that the conductivity must be proportional to the square
root of the density ρ of the conducting fluid

σ = κ ρ1/2 , (206)

where κ is a dimensionless conductivity constant. The form (206) is required by self-
similarity, and is not necessarily realistic (although it is realistic that the conductivity
increases with density). However, the conductivity (206) is adequate for the purpose of
exploring the consequences of dissipation in simple models of black holes.

5.26.11 Tetrad connections

The expressions for the tetrad connections for the self-similar spacetime are the same as
those (127) for a general spherically symmetric spacetime, with just a relabeling of the time
and radial coordinates into conformal coordinates

t → η , r → x . (207)

Specifically, equations (127) for the tetrad connections become become

Γηxη = g , Γηxx = h , Γηθθ = Γηφφ =
βη

r
, Γxθθ = Γxφφ =

βx

r
, Γθφφ =

cot θ

r
, (208)

in which g and h have the same physical interpretation discussed in §5.23.5 for the general
spherically symmetric case: g is the proper radial acceleration, and h is the radial Hubble
parameter. Expressions (128) and (129) for g and h translate in the self-similar spacetime
to

g ≡ ∂x ln(r ξη) , h ≡ ∂η ln(r ξx) . (209)

Comparing equations (209) to equations (128) and (132) shows that the vierbein coefficent
α and scale factor λ translate in the self-similar spacetime to

α = rξη , λ = rξx . (210)

5.26.12 Spherical equations carry over to the self-similar case

The tetrad-frame Riemann, Weyl, and Einstein tensors in the self-similar spacetime take the
same form as in the general spherical case, equations (133)–(137), with just a relabeling (207)
into conformal coordinates.

Likewise, the equations for the interior mass in §5.23.9, for energy-momentum conservation
in §5.23.10, for the first law in §5.23.11, and the various equations for the electromagnetic
field in §5.24, all carry through unchanged except for a relabeling (207) of coordinates.
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5.26.13 From partial to ordinary differential equations

The central simplifying feature of self-similar solutions is that they turn a system of partial
differential equations into a system of ordinary differential equations.

By definition, a dimensionless quantity F (x) is independent of conformal time η. It follows
that the partial derivative of any dimensionless quantity F (x) with respect to conformal time
η vanishes

0 =
∂F (x)

∂η
= ξm∂mF (x) = (ξη∂η + ξx∂x) F (x) . (211)

Consequently the directed radial derivative ∂xf of a dimensionless quantity F (x) is related
to its directed time derivative ∂ηf by

∂xF (x) = − ξx

ξη
∂ηF (x) . (212)

Equation (212) allows radial derivatives to be converted to time derivatives.

5.26.14 Integrals of motion

As remarked above, equation (211), in self-similar solutions ξm∂mF (x) = 0 for any dimen-
sionless function F (x). If both the directed derivatives ∂ηF (x) and ∂xF (x) are known from
the Einstein equations or elsewhere, then the result will be an integral of motion.

The spherically symmetric, self-similar Einstein equations admit two integrals of motion

0 = r ξm∂mβη = r βx(ξ
ηg + ξxh) − ξη

(

M

r
+ 4πr2p

)

+ ξx4πrf , (213a)

0 = r ξm∂mβx = r βη(ξ
ηg + ξxh) + ξx

(

M

r
− 4πr2ρ

)

+ ξη4πrf . (213b)

In the center-of-mass frame, f = 0, these integrals of motion simplify to

0 = r ξm∂mβη = r βx(ξ
ηg + ξxh) − ξη

(

M

r
+ 4πr2p

)

, (214a)

0 = r ξm∂mβx = r βη(ξ
ηg + ξxh) + ξx

(

M

r
− 4πr2ρ

)

. (214b)

Taking βη times (214a) minus βx times (214b) gives, in the center-of-mass frame,

0 = r ξm∂m
M

r
= − v

M

r
+ 4πr2 (ξxβxρ − ξηβηp) . (215)

For electrically charged solutions, a third integral of motion comes from

0 = r ξm∂m
Q

r
= − v

Q

r
+ 4πr2 (ξxq − ξηj) (216)
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which is valid in any radial tetrad frame, not just the center-of-mass frame.

For a fluid with equation of state p = wρ, a fourth integral comes from considering

0 = r ξm∂m(r2p) = r
[

w ξη∂η(r
2ρ) + ξx∂x(r

2p)
]

(217)

and simplifying using the energy conservation equation for ∂ηρ and the momentum conser-
vation equation for ∂xp.

5.26.15 Integration variable

It is desirable to choose an integration variable that varies monotonically. A natural choice
is the proper time τ of the baryonic fluid, since this is guaranteed to increase monotonically.
Since the 4-velocity at rest in the tetrad frame is by definition um = {1, 0, 0, 0}, the proper
time derivative is related to the directed conformal time derivative in the baryonic tetrad
frame by d/dτ = um∂m = ∂η.

However, there is another choice of integration variable, the ray-tracing variable X defined
by equation (188), that is not specifically tied to the tetrad frame of the baryons, and that
has a desirable (tetrad and coordinate) gauge-invariant meaning. The proper time derivative
of any dimensionless function F (x) in the tetrad frame is related to its derivative dF/dX
with respect to the ray-tracing variable X by

∂ηF = um∂mF = uX∂XF = − ξx

r

dF

dX
. (218)

In the third expression, uX∂XF is um∂mF expressed in the similarity frame of §5.26.5, the
time contribution uη

×∂η
×

F vanishing in the similarity frame because it is proportional to

the conformal time derivative ∂F/∂η× = 0. In the last expression of (218), uX has been
replaced by −ux = −ξx/∆1/2 in view of equation (186), the minus sign coming from the fact
that uX is the radial component of the tetrad 4-velocity of the tetrad frame relative to the
similarity frame, while ux in equation (186) is the radial component of the tetrad 4-velocity
of the similarity frame relative to the tetrad frame. Also in the last expression of (218), the
directed derivative ∂X with respect to the ray-tracing variable X has been translated into
its coordinate partial derivative, ∂X = (∆1/2/r) ∂/∂X, which follows from the metric (189).

In summary, the chosen integration variable is the dimensionless ray-tracing variable −X
(with a minus because −X is monotonically increasing), the derivative with respect to which,
acting on any dimensionless function, is related to the proper time derivative in any tetrad
frame (not just the baryonic frame) by

− d

dX
=

r

ξx
∂η . (219)

Equation (219) involves ξx, which is proportional to the proper velocity of the tetrad frame
through the similarity frame, equation (187), and which therefore, being initially positive,
must always remain positive as long as the fluid does not turn back on itself, as must be
true for the self-similar solution to be consistent.
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5.26.16 Summary of equations for a single charged fluid

For reference, it is helpful to collect here the full set of equations governing self-similar
spherically symmetric evolution in the case of a single charged “baryonic” fluid (hereafter
subscripted b) with isotropic equation of state

pb = p⊥b = w ρb , (220)

and conductivity

σb = κb ρ
1/2
b . (221)

In accordance with the arguments in §5.26.10, equations (204) and (206), self-similarity
requires that the pressure-to-density ratio wb and the conductivity coefficent κb both be
(dimensionless) constants.

It is natural to work in the center-of-mass frame of the baryonic fluid, which also coincides
with the center-of-mass frame of the fluid plus electric field (the electric field, being invariant
under Lorentz boosts, does not pick out any particular radial frame).

The proper time τ in the baryonic frame evolves as

− dτ

dX
=

r

ξx
, (222)

which follows from equation (219) and the fact that ∂ητ = 1. The circumferential radius r
evolves along the path of the baryonic fluid as

− d ln r

dX
=

βη

ξx
. (223)

Although it is straightforward to write down the equations governing how the baryonic tetrad
frame moves through the conformal coordinates η and x, there is not much to be gained from
this because the conformal coordinates have no fundamental physical significance.

Next, the defining equations (209) for the proper acceleration g and Hubble parameter h
yield equations for the evolution of the time and radial components of the conformal Killing
vector ξm

− dξη

dX
= βx − rg , (224a)

− dξx

dX
= −βη + rh , (224b)

in which, in the formula for g, equation (212) has been used to convert the conformal radial
derivative ∂x to the conformal time derivative ∂η, and thence to −d/dX by equation (219).

Next, the Einstein equations (137b) and (137a) [with coordinates relabeled per (207] in the
center-of-mass frame (142) yield evolution equations for the time and radial components of
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the vierbein coefficients βm

− dβη

dX
= − βx

ξη
rh , (225a)

− dβx

dX
=

βη

ξx
rg , (225b)

where again, in the formula for βη, equation (212) has been used to convert the conformal
radial derivative ∂x to the conformal time derivative ∂η. The 4 evolution equations (224)
and (225) for ξm and βm are not independent: they are related by ξmβm = v, a constant,
equation (179). To maintain numerical precision, it is important to avoid expressing small
quantities as differences of large quantities. In practice, a suitable choice of variables to
integrate proves to be ξη+ξx, βη−βx, and βx, each of which can be tiny in some circumstances.
Starting from these variables, the following equations yield ξη − ξx, along with the interior
mass M and the horizon function ∆, equations (178) and (180), in a fashion that ensures
numerical stability:

ξη − ξx =
2v − (ξη + ξx)(βη + βx)

βη − βx
, (226a)

2M

r
= 1 + (βη + βx)(βη − βx) , (226b)

∆ = (ξη + ξx)(ξη − ξx) . (226c)

The evolution equations (224) and (225) involve g and h. The integrals of motion considered
in §5.26.14 yield explicit expressions for g and h not involving any derivatives. For the
Hubble parameter h, taking ξx times the integral of motion (214a) plus ξη times (214b)
yields

rh = − ξη

ξx
rg +

ξη

v

4πε , (227)

where ε is the enthalpy

ε ≡ ρ + p = (1 + wb)ρb , (228)

in which the last equality is true because the electromagnetic enthalpy is identically zero,
ρe + pe = 0, equation (165). For the proper acceleration g, a somewhat lengthy calculation
starting from the integral of motion (217), and simplifying using the integrals of motion (215)
for M and (216) for Q, the expression (227) for h, Maxwell’s equation (163b) [with the
relabeling (207)], and the conductivity (221) in Ohm’s law (205), gives

rg =
ξx {2wbvM/r + [(1 − wb)v + (1 + wb)4πrσbξ

η] Q2/r2 − wb(4πξηε)2/v}
4πε [(ξx)2 − wb(ξη)2]

. (229)
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Two more equations complete the suite. The first, which represents energy conservation for
the baryonic fluid, can be written as an equation governing the entropy Sb of the fluid

− d lnSb

dX
=

σbQ
2

r(1 + wb)ρbξx
, (230)

in which the Sb is (up to an arbitrary constant) the entropy of a comoving volume element
V ∝ r3ξx of the baryonic fluid

Sb ≡ r3ξxρ
1/(1+wb)
b . (231)

That equation (230) really is an entropy equation can be confirmed by rewriting it as

1

V

(

dρbV

dτ
+ pb

dV

dτ

)

= jE =
σbQ

2

r4
, (232)

in which jE is recognized as the Ohmic dissipation, the rate per unit volume at which the
baryonic volume element V is being heated.

The final equation represents electromagnetic energy conservation, equation (166a), which
can be written

− d ln Q

dX
= − 4πrσb

ξx
. (233)

The (heat) energy going into the baryonic fluid is balanced by the (free) energy coming out
of the electromagnetic field.

5.26.17 Messenger from the outside universe

In the Reissner-Nordström (and Kerr-Newman) geometries, a person passing through the
outgoing inner horizon sees the entire future of the outside universe go by in an infinitely
blueshifted flash. Violent things happen also to a person who falls into a realistic black
hole, but do those violent things depend only on what happens in the infinite future? If so,
then it makes the predictions less credible, because a lot can happen in the infinite future,
such as mergers of the black hole with other black holes, evaporation of the black hole, and
unfathomables beyond our ken.

In practice, the computations show that the extreme things that happen inside black holes
do not depend on what happens in the distant future. On the contrary, practically no time
goes by in the outside universe. To check that this is the case, it is convenient to introduce
a messenger from the outside universe, in the form of radially free-falling non-interacting
pressureless tracer dark matter (subscripted d), which can be taken to be either massless
(hot) or massive (cold).

By assumption, the messenger dark matter is freely-falling along a radial geodesic. If the dark
matter is massive, then the 4-velocity of the dark matter in its own frame is by definition um

d =
{1, 0, 0, 0}, and it follows from the integral of motion (192) coupled with the expression (193)
that

ud,η = rd ξη
d = v τd (234)
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where rd is the circumferential radius along the geodesic, and τd is the proper time attached
to the dark matter particle. Equation (234) can be taken to be true also for a massless
dark matter particle, on the understanding that, upon rescaling to the affine parameter, the
4-vectors um

d , ξm
d , and βd,m all become null 4-vectors.

The proper time τd attached to the freely-falling dark matter particles provides a clock
that tells the baryonic fluid inside the black hole how much time has passed in the outside
universe. During mass inflation, the baryonic fluid may see the dark matter as extremely
highly blueshifted, but whether that high blueshift translates into a lot of time going by in
the outside universe can be checked by looking at the dark matter clock.

One application of the dark matter clock, which will be used in §5.27, is to determine the
accretion rate Ṁ• of the black hole as seen from afar. It is not satisfactory to measure the
accretion rate with respect to time recorded on clocks near the black hole, because that
time could differ substantially from that measured at infinity. If the infalling dark matter
clocks are synchronized to the proper time on clocks at rest at infinity, then the time on
successive dark matter clocks falling through any fiducial point will represent the time at
rest at infinity.

Equation (234) involves three unknowns, the circumferential radius rd along the path of the
dark matter (which evolves differently from the circumferential radius r in another frame,
such as the baryonic frame), the proper time τd of the dark matter, and the time component
ξη
d of the conformal Killing vector in the dark matter frame. Solving for two of these will yield

the third. Analogously to equations (222) and (223), the equations governing the evolution
of τd and rd are, with µ = 1 for massive, µ = 0 for massless dark matter,

− dτd

dX
=

µ2rd

ξx
d

, (235)

− d ln rd

dX
=

βd,η

ξx
d

. (236)

Given these, the conformal Killing vector ξm
d in the dark matter frame, the 4-velocity um

d of
the dark matter relative to the baryonic frame, and the radial 4-gradient βd,m in the dark
matter frame follow according to the following chain of equations, which are organized so as
to ensure numerical accuracy:

ξη
d =

v τd

rd
, (237a)

ξx
d =

[

(ξη
d)2 − µ2∆

]1/2
, (237b)

uη
d − ux

d =
ξη
d + ξx

d

ξη + ξx
, (237c)

uη
d + ux

d =
µ2

uη
d − ux

d

, (237d)

βd,η ± βd,x = (βη ± βx) (uη
d ± ux

d) . (237e)
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5.27 Self-similar models of the interior structure of black holes

The apparatus is now in hand actually to do some real calculations of the interior structure
of black holes. All the models presented in this section are spherical and self-similar. See
Hamilton & Pollack (2005, PRD 71, 084031 & 084031) and Wallace, Hamilton & Polhemus
(2008, arXiv:0801.4415) for more.

5.27.1 Boundary conditions at an outer sonic point

Because information can propagate only inward inside the horizon of a black hole, it is
natural to set the boundary conditions outside the horizon. The policy adopted here is to
set them at a sonic point, where the infalling fluid accelerates from subsonic to supersonic.
The proper 3-velocity of the fluid through the self-similar frame is ξx/ξη, equation (187) (the
velocity ξx/ξη is positive falling inward), and the sound speed is

sound speed =

√

pb

ρb

=
√

wb , (238)

and sonic points occur where the velocity equals the sound speed

ξx

ξη
= ±√

wb at sonic points . (239)

The denominator of the expression (229) for the proper acceleration g is zero at sonic points,
indicating that the acceleration will diverge unless the numerator is also zero. What happens
at a sonic point depends on whether the fluid transitions from subsonic upstream to super-
sonic downstream (as here) or vice versa. If (as here) the fluid transitions from subsonic to
supersonic, then sound waves generated by discontinuities near the sonic point can propa-
gate upstream, plausibly modifying the flow so as to ensure a smooth transition through the
sonic point, effectively forcing the numerator, like the denominator, of the expression (229)
to pass through zero at the sonic point. Conversely, if the fluid transitions from supersonic
to subsonic, then sound waves cannot propagate upstream to warn the incoming fluid that a
divergent acceleration is coming, and the result is a shock wave, where the fluid accelerates
discontinuously, is heated, and thereby passes from supersonic to subsonic.

The solutions considered here assume that the acceleration g at the sonic point is not only
continuous [so the numerator of (229) is zero] but also differentiable. Such a sonic point is
said to be regular, and the assumption imposes two boundary conditions at the sonic point.

The accretion in real black holes is likely to be much more complicated, but the assumption
of a regular sonic point is the simplest physically reasonable one.
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5.27.2 Mass and charge of the black hole

The mass M• and charge Q• of the black hole at any instant can be defined to be those that
would be measured by a distant observer if there were no mass or charge outside the sonic
point

M• = M +
Q2

2r
, Q• = Q at the sonic point . (240)

The mass M• in equation (240) includes the mass-energy Q2/2r that would be in the electric
field outside the sonic point if there were no charge outside the sonic point, but it does not
include mass-energy from any additional mass or charge that might be outside the sonic
point.

In self-similar evolution, the black hole mass increases linearly with time, M• ∝ t, where t is
the proper time at rest far from the black hole. As discussed in §5.26.17, this time t equals
the proper time τd = rξη

d/v recorded by dark matter clocks that free-fall radially from zero
velocity at infinity. Thus the mass accretion rate Ṁ• is

Ṁ• ≡
dM•

dt
=

M•

τd
=

vM•

rξη
d

at the sonic point . (241)

If there is no mass outside the sonic point (apart from the mass-energy in the electric field),
then a freely-falling dark matter particle will have

βd,x = 1 at the sonic point , (242)

which can be taken as the boundary condition on the dark matter at the sonic point, for either
massive or massless dark matter. Equation (242) follows from the facts that the geodesic
equations in empty space around a charged black hole (Reissner-Nordström metric) imply
that βd,x = constant for a radially free-falling particle (the same conclusion can drawn from
the Einstein equation (137a)), and that a particle at rest at infinity satisfies βd,η = ∂d,ηr = 0,
and consequently βd,x = 1 from equation (178) with r → ∞.

As remarked following equation (181), the residual gauge freedom in the global rescaling of
conformal time η allows the expansion velocity v to be adjusted at will. One choice suggested
by equation (241) is to set (but one could equally well set v to the expansion velocity of the
horizon, v = ṙ+, for example)

v = Ṁ• , (243)

which is equivalent to setting

ξη
d =

M•

r
at the sonic point . (244)

Equation (244) is not a boundary condition: it is just a choice of units of conformal time
η. Equation (244) and the boundary condition (242) coupled with the scalar relations (178)
and (179) fully determine the dark matter 4-vectors βd,m and ξm

d at the sonic point.
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5.27.3 Equation of state

The density ρb and temperature Tb of an ideal relativistic baryonic fluid in thermodynamic
equilibrium are related by

ρb =
π2g

30
T 4

b , (245)

where

g = gB +
7

8
gF (246)

is the effective number of relativistic particle species, with gB and gF being the number of
bosonic and fermionic species. If the expected increase in g with temperature T is modeled
(so as not to spoil self-similarity) as a weak power law g/gp = T ǫ, with gp the effective
number of relativistic species at the Planck temperature, then the relation between density
ρb and temperature Tb is

ρb =
π2gp

30
T

(1+w)/w
b , (247)

with equation of state parameter wb = 1/(3 + ǫ) slightly less than the standard relativistic
value w = 1/3. In the models considered here, the baryonic equation of state is taken to be

wb = 0.32 . (248)

The effective number gp is fixed by setting the number of relativistic particles species to
g = 5.5 at T = 10 MeV, corresponding to a plasma of relativistic photons, electrons, and
positrons. This corresponds to choosing the effective number of relativistic species at the
Planck temperature to be gp ≈ 2,400, which is not unreasonable.

The chemical potential of the relativistic baryonic fluid is likely to be close to zero, cor-
responding to equal numbers of particles and anti-particles. The entropy Sb of a proper
Lagrangian volume element V of the fluid is then

Sb =
(ρb + pb)V

Tb
, (249)

which agrees with the earlier expression (231), but now has the correct normalization.

5.27.4 Entropy creation

One fundamentally interesting question about black hole interiors is how much entropy
might be created inside the horizon. Bekenstein first argued that a black hole should have
a quantum entropy proportional to its horizon area A, and Hawking (1974) supplied the
constant of proportionality 1/4 in Planck units. The Bekenstein-Hawking entropy SBH is, in
Planck units c = G = ~ = 1,

SBH =
A

4
. (250)
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For a spherical black hole of horizon radius r+, the area is A = 4πr2
+. Hawking showed that

a black hole has a temperature TH equal to 1/(2π) times the surface gravity g+ at its horizon,
again in Planck units,

TH =
g+

2π
. (251)

The surface gravity is defined to be the proper radial acceleration measured by a person in
free-fall at the horizon. For a spherical black hole, the surface gravity is g+ = −Dtβt =
M/r2 + 4πrp evaluated at the horizon, equation (161a).

The proper velocity of the baryonic fluid through the sonic point equals ξx/ξη, equation (187).
Thus the entropy Sb accreted through the sonic point per unit proper time of the fluid is

dSb

dτ
=

(1 + wb)ρb

Tb

4πr2ξx

ξη
. (252)

The horizon radius r+, which is at fixed conformal radius x, expands in proportion to the
conformal factor, r+ ∝ a, and the conformal factor a increases as d ln a/dτ = ∂η ln a =
v/(rξη), so the Bekenstein-Hawking entropy SBH = πr2

+ increases as

dSBH

dτ
=

2πr2
+v

rξη
. (253)

Thus the entropy Sb accreted through the sonic point per unit increase of the Bekenstein-
Hawking entropy SBH is

dSb

dSBH
=

(1 + wb)ρb4πr3ξx

2πr2
+v Tb

∣

∣

∣

∣

r=rs

. (254)

Inside the sonic point, dissipation increases the entropy according to equation (230). Since
the entropy can diverge at a central singularity where the density diverges, and quantum
gravity presumably intervenes at some point, it makes sense to truncate the production of
entropy at a “splat” point where the density ρb hits a prescribed splat density ρ#

ρb = ρ# . (255)

Integrating equation (230) from the sonic point to the splat point yields the ratio of the
entropies at the sonic and splat points. Multiplying the accreted entropy, equation (254), by
this ratio yields the rate of increase of the entropy of the black hole, truncated at the splat
point, per unit increase of its Bekenstein-Hawking entropy

dSb

dSBH
=

(1 + wb)ρb4πr3ξx

2πr2
+v Tb

∣

∣

∣

∣

ρb=ρ#

. (256)
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5.27.5 Holography

The idea that the entropy of a black hole cannot exceed its Bekenstein-Hawking entropy has
motivated holographic conjectures that the degrees of freedom of a volume are somehow
encoded on its boundary, and consequently that the entropy of a volume is bounded by
those degrees of freedom. Various counter-examples dispose of most simple-minded versions
of holographic entropy bounds. The most successful entropy bound, with no known counter-
examples, is Bousso’s covariant entropy bound (Bousso 2002, Rev. Mod. Phys. 74, 825).
The covariant entropy bound concerns not just any old 3-dimensional volume, but rather the
3-dimensional volume formed by a null hypersurface, a lightsheet. For example, the horizon
of a black hole is a null hypersurface, a lightsheet. The covariant entropy bound asserts
that the entropy that passes (inward or outward) through a lightsheet that is everywhere
converging cannot exceed 1/4 of the 2-dimensional area of the boundary of the lightsheet.

In the self-similar black holes under consideration, the horizon is expanding, and outgoing
lightrays that sit on the horizon do not constitute a converging lightsheet. However, a
spherical shell of ingoing lightrays that starts on the horizon falls inwards and therefore
does form a converging lightsheet, and a spherical shell of outgoing lightrays that starts
just slightly inside the horizon also falls inward and forms a converging lightsheet. The rate
at which entropy Sb passes through such ingoing or outgoing spherical lightsheets per unit
decrease in the area Scov ≡ πr2 of the lightsheet is

∣

∣
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∣

=
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r2
+

r2

v

ξx|βη ∓ βx|
, (257)

in which the ∓ sign is − for ingoing, + for outgoing lightsheets. A sufficient condition for
Bousso’s covariant entropy bound to be satisfied is

|dSb/dScov| ≤ 1 . (258)
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5.27.6 Black hole accreting a neutral relativistic plasma

The simplest case to consider is that of a black hole accreting a neutral relativistic plasma.
In the self-similar solutions, the charge of the black hole is produced self-consistently by the
accreted charge of the baryonic fluid, so a neutral fluid produces an uncharged black hole.

Figure 4 shows the baryonic density ρb and Weyl curvature C inside the uncharged black
hole. The mass and accretion rate have been taken to be

M• = 4 × 106 M⊙ , Ṁ• = 10−16 , (259)

which are motivated by the fact that the mass of the supermassive black hole at the center
of the Milky Way is 4 × 106 M⊙, and its accretion rate is

Mass of MW black hole

age of Universe
≈ 4 × 106 M⊙

1010 yr
≈ 6 × 1060 Planck units

4 × 1044 Planck units
≈ 10−16 . (260)

Figure 4 shows that the baryonic plasma plunges uneventfully to a central singularity, just
as in the Schwarzschild solution. The Weyl curvature scalar hits the Planck scale, |C| = 1,
while the baryonic proper density ρb is still well below the Planck density, so this singularity
is curvature-dominated.
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Figure 4: An uncharged baryonic plasma falls into an uncharged spherical black hole. The
plot shows in Planck units, as a function of radius, the plasma density ρb, the Weyl curvature
scalar C (which is negative), and the rate dSb/dSBH of increase of the plasma entropy per unit
increase in the Bekenstein-Hawking entropy of the black hole. The mass is M• = 4×106 M⊙,
the accretion rate is Ṁ• = 10−16, and the equation of state is wb = 0.32.
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5.27.7 Black hole accreting a non-conducting charged relativistic plasma

The next simplest case is that of a black hole accreting a charged but non-conducting rela-
tivistic plasma.

Figure 5 shows a black hole with charge-to-mass Q•/M• = 10−5, but otherwise the same
parameters as in the uncharged black hole of §5.27.6: M• = 4 × 106 M⊙, Ṁ• = 10−16,
and wb = 0.32. Inside the outer horizon, the baryonic plasma, repelled by the electric
charge of the black hole self-consistently generated by the accretion of the charged baryons,
becomes outgoing. Like the Reissner-Nordström geometry, the black hole has an (outgoing)
inner horizon. The baryons drop through the inner horizon, shortly after which the self-
similar solution terminates at an irregular sonic point, where the proper acceleration diverges.
Normally this is a signal that a shock must form, but even if a shock is introduced, the plasma
still terminates at an irregular sonic point shortly downstream of the shock. The failure of
the self-similar to continue does not invalidate the solution, because the failure is hidden
beneath the inner horizon, and cannot be communicated to infalling matter above it.

The solution is nevertheless not realistic, because it assumes that there is no ingoing matter,
such as would inevitably be produced for example by infalling neutral dark matter. Such
ingoing matter would appear infinitely blueshifted to the outgoing baryons falling through
the inner horizon, which would produce mass inflation, as in §5.27.10.
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Figure 5: A plasma that is charged but non-conducting. The black hole has an inner horizon
like the Reissner-Nordström geometry. The self-similar solution terminates at an irregular
sonic point just beneath the inner horizon. The mass is M• = 4 × 106 M⊙, accretion rate
Ṁ• = 10−16, equation of state wb = 0.32, and black hole charge-to-mass Q•/M• = 10−5.
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5.27.8 Black hole accreting a conducting relativistic plasma

What happens if the baryonic plasma is not only electrically charged but also electrically
conducting? If the conductivity is small, then the solutions resemble the non-conducting so-
lutions of the previous subsection, §5.27.7. But if the conductivity is large enough effectively
to neutralize the plasma as it approaches the center, then the plasma can plunge all the way
to the central singularity, as in the uncharged case in §5.27.6.

Figure 6 shows a case in which the conductivity has been tuned to equal, within numerical
accuracy, the critical conductivity κb = 0.35 above which the plasma collapses to a central
singularity. The parameters are otherwise the same as in previous subsections: a mass of
M• = 4× 106 M⊙, an accretion rate Ṁ• = 10−16, an equation of state wb = 0.32, and a black
hole charge-to-mass of Q•/M• = 10−5.

The solution at the critical conductivity exhibits the periodic self-similar behavior first dis-
covered in numerical simulations by Choptuik (1993, PRL 70, 9), and known as “critical
collapse” because it happens at the borderline between solutions that do and do not col-
lapse to a black hole. The ringing of curves in Figure 6 is a manifestation of the self-similar
periodicity, not a numerical error.

These solutions are not subject to the mass inflation instability, and they could therefore
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Figure 6: Here the baryonic plasma is charged, and electrically conducting. The conductivity
is at (within numerical accuracy) the threshold above which the plasma plunges to a central
singularity. The mass is M• = 4 × 106 M⊙, the accretion rate Ṁ• = 10−16, the equation
of state wb = 0.32, the charge-to-mass Q•/M• = 10−5, and the conductivity parameter
κb = 0.35. Arrows show how quantities vary a factor of 10 into the past and future.
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be prototypical of the behavior inside realistic rotating black holes. For this to work, the
outward transport of angular momentum inside a rotating black hole must be large enough
effectively to produce zero angular momentum at the center. My instinct is that angular
momentum transport is probably not strong enough, but I do not know this for sure. If
angular momentum transport is not strong enough, then mass inflation will take place.

Figure 6 shows that the entropy produced by Ohmic dissipation inside the black hole can
potentially exceed the Bekenstein-Hawking entropy of the black hole by a large factor. The
Figure shows the rate dSb/dSBH of increase of entropy per unit increase in its Bekenstein-
Hawking entropy, as a function of the hypothetical splat point above which entropy produc-
tion is truncated. The rate is almost independent of the black hole mass M• at fixed splat
density ρ#, so it is legitimate to interpret dSb/dSBH as the cumulative entropy created inside
the black hole relative to the Bekenstein-Hawking entropy. Truncated at the Planck scale,
|C| = 1, the entropy relative to Bekenstein-Hawking is dSb/dSBH ≈ 1010.

Generally, the smaller the accretion rate Ṁ•, the more entropy is produced. If moreover
the charge-to-mass Q•/M• is large, then the entropy can be produced closer to the outer
horizon. Figure 7 shows a model with a relatively large charge-to-mass Q•/M• = 0.8, and
a low accretion rate Ṁ• = 10−28. The large charge-to-mass ratio in spite of the relatively
high conductivity requires force-feeding the black hole: the sonic point must be pushed to
just above the horizon. The large charge and high conductivity leads to a burst of entropy
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Figure 7: This black hole creates a lot of entropy by having a large charge-to-mass Q•/M• =
0.8 and a low accretion rate Ṁ• = 10−28. The conductivity parameter κb = 0.35 is again at
the threshold above which the plasma plunges to a central singularity. The equation of state
is wb = 0.32.
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production just beneath the horizon.

If the entropy created inside a black hole exceeds the Bekenstein-Hawking entropy, and the
black hole later evaporates radiating only the Bekenstein-Hawking entropy, then entropy is
destroyed, violating the second law of thermodynamics.

This startling conclusion is premised on the assumption that entropy created inside a black
hole accumulates additively, which in turn derives from the assumption that the Hilbert
space of states is multiplicative over spacelike-separated regions. This assumption, called
locality, derives from the fundamental proposition of quantum field theory in flat space
that field operators at spacelike-separated points commute. This reasoning is essentially the
same as originally led Hawking (1976) to conclude that black holes must destroy information.

The same ideas that motivate holography also rescue the second law. If the future light-
cones of spacelike-separated points do not intersect, then the points are permanently out
of communication, and can behave like alternate quantum realities, like Schrödinger’s dead-
and-alive quantum cat. Just as it is not legitimate to the add the entropies of the dead cat
and the live cat, so also it is not legitimate to add the entropies of regions inside a black
hole whose future lightcones do not intersect. The states of such separated regions, instead
of being distinct, are quantum entangled with each other.

Figures 6 and 7 show that the rate |dSb/dScov| at which entropy passes through ingoing or
outgoing spherical lightsheets is less than one at all scales below the Planck scale. This
shows not only that the black holes obey Bousso’s covariant entropy bound, but also that
no individual observer inside the black hole sees more than the Bekenstein-Hawking entropy
on their lightcone. No observer actually witnesses a violation of the second law.

matter
Infalling

Sb >> SBH

Sb = SBH

S
b <

S
BH

Figure 8: Partial Penrose diagram of the black hole. The entropy passing through the
spacelike slice before the black hole evaporates exceeds that passing through the spacelike
slice after the black hole evaporates, apparently violating the second law of thermodynamics.
However, the entropy passing through any null slice respects the second law.
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5.27.9 Black hole accreting a charged massless scalar field

The charged, non-conducting plasma considered in §5.27.7 fell through an (outgoing) inner
horizon without undergoing mass inflation. This can be attributed to the fact that relativistic
counter-streaming could not occur: there was only a single (outgoing) fluid, and the speed
of sound in the fluid was less than the speed of light.

In reality, unless dissipation destroys the inner horizon as in §5.27.8, then relativistic counter-
streaming between ingoing and outgoing fluids will undoubtedly take place, through gravi-
tational waves if nothing else.

One way to allow relativistic counter-streaming is to let the speed of sound be the speed of
light. This is true in a massless scalar (= spin-0) field φ, which has an equation of state
wφ = 1. Figure 9 shows a black hole that accretes a charged, non-conducting fluid with this
equation of state. The parameters are otherwise the same as as in previous subsections: a
mass of M• = 4× 106 M⊙, an accretion rate of Ṁ• = 10−16, and a black hole charge-to-mass
of Q•/M• = 10−5. As the Figure shows, mass inflation takes place just above the place where
the inner horizon would be. During mass inflation, the density ρφ and the Weyl scalar C
rapidly exponentiate up to the Planck scale and beyond.
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Figure 9: Instead of a relativistic plasma, this shows a charged scalar field φ whose equation
of state wφ = 1 means that the speed of sound equals the speed of light. The scalar field
therefore supports relativistic counter-streaming, as a result of which mass inflation occurs
just above the erstwhile inner horizon. The mass is M• = 4 × 106 M⊙, the accretion rate
Ṁ• = 10−16, the charge-to-mass Q•/M• = 10−5, and the conductivity is zero.
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One of the remarkable features of the mass inflation instability is that the smaller the accre-
tion rate, the more violent the instability. Figure 10 shows mass inflation in a black hole of
charge-to-mass Q•/M• = 0.8 accreting a massless scalar field at rates Ṁ• = 0.01, 0.003, and
0.001. The charge-to-mass has been chosen to be largish so that the inner horizon is not too
far below the outer horizon, and the accretion rates have been chosen to be large because
otherwise the inflationary growth rate is too rapid to be discerned easily on the graph. The
density ρφ and Weyl scalar C exponentiate along with, and in proportion to, the interior
mass M , which increases as the radius r decreases as

M ∝ exp(− ln r/Ṁ•) . (261)

Physically, the scale of length of inflation is set by how close to the inner horizon infalling
material approaches before mass inflation begins. The smaller the accretion rate, the closer
the approach, and consequently the shorter the length scale of inflation.
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Figure 10: The density ρφ and Weyl curvature scalar |C| inside a black hole accreting a
massless scalar field. The graph shows three cases, with mass accretion rates Ṁ• = 0.01,
0.003, and 0.001. The graph illustrates that the smaller the accretion rate, the faster the
density and curvature inflate. Mass inflation destroys the inner horizon: the dashed vertical
line labeled “inner horizon” shows the position that the inner horizon would have if mass
inflation did not occur. The black hole mass is M• = 4 × 106 M⊙, the charge-to-mass is
Q•/M• = 0.8, and the conductivity is zero.
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5.27.10 Black hole accreting charged baryons and dark matter

No scalar field (massless or otherwise) has yet been observed in nature, although it is sup-
posed that the Higgs field is a scalar field, and it is likely that cosmological inflation was
driven by a scalar field. Another way to allow mass inflation in simple models is to admit
not one but two fluids that can counter-stream relativistically through each other. A natural
possibility is to feed the black hole not only with a charged relativistic fluid of baryons but
also with neutral pressureless dark matter that streams freely through the baryons. The
charged baryons, being repelled by the electric charge of the black hole, become outgoing,
while the neutral dark matter remains ingoing.

Figure 11 shows that relativistic counter-streaming between the baryons and the dark matter
causes the center-of-mass density ρ and the Weyl curvature scalar C to inflate quickly up
to the Planck scale and beyond. The ratio of dark matter to baryonic density at the sonic
point is ρd/ρb = 0.1, but otherwise the parameters are the generic parameters of previous
subsections: M• = 4 × 106 M⊙, Ṁ• = 10−16, wb = 0.32, Q•/M• = 10−5, and zero conductiv-
ity. Almost all the center-of-mass energy ρ is in the counter-streaming energy between the
outgoing baryonic and ingoing dark matter. The individual densities ρb of baryons and ρd

of dark matter (and ρe of electromagnetic energy) increase only modestly.
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Figure 11: Back to the relativistic charged baryonic plasma, but now in addition the black
hole accretes neutral pressureless uncharged dark matter, which streams freely through the
baryonic plasma. The relativistic counter-streaming produces mass inflation just above the
erstwhile inner horizon. The mass is M• = 4 × 106 M⊙, the accretion rate Ṁ• = 10−16, the
baryonic equation of state wb = 0.32, the charge-to-mass Q•/M• = 10−5, the conductivity is
zero, and the ratio of dark matter to baryonic density at the outer sonic point is ρd/ρb = 0.1.
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As in the case of the massless scalar field considered in the previous subsection, §5.27.9,
the smaller the accretion rate, the shorter the length scale of inflation. Not only that, but
the smaller one of the ingoing or outgoing streams is relative to the other, the shorter the
length scale of inflation. Figure 12 shows a black hole with three different ratios of the
dark-matter-to-baryon density ratio at the sonic point, ρd/ρb = 0.3, 0.1, and 0.03, all with
the same total accretion rate Ṁ• = 10−2. The smaller the dark matter stream, the faster
is inflation. The accretion rate Ṁ• and the dark-matter-to-baryon ratio ρd/ρb have been
chosen to be relatively large so that the inflationary growth rate is discernable easily on the
graph.

Figure 12 shows that, as in Figure 11, almost all the center-of-mass energy is in the streaming
energy between the baryons and the dark matter. For one case, ρd/ρb = 0.3, Figure 12 shows
the individual densities ρb of baryons, ρd of dark matter, and ρe of electromagnetic energy,
all of which remain tiny compared to the streaming energy.
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Figure 12: The center-of-mass density ρ and Weyl curvature |C| inside a black hole accreting
baryons and dark matter at rate Ṁ• = 0.01. The graph shows three cases, with dark-matter-
to-baryon ratio at the sonic point of ρd/ρb = 0.3, 0.1, and 0.03. The smaller the ratio of dark
matter to baryons, the faster the center-of-mass density ρ and curvature C inflate. For the
largest ratio, ρd/ρb = 0.3 (to avoid confusion, only this case is plotted), the graph also shows
the individual proper densities ρb of baryons, ρd of dark matter, and ρe of electromagnetic
energy. During mass inflation, almost all the center-of-mass energy ρ is in the streaming
energy: the proper densities of individual components remain small. The black hole mass
is M• = 4 × 106 M⊙, the baryonic equation of state is wb = 0.32, the charge-to-mass is
Q•/M• = 0.8, and the conductivity is zero.
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5.27.11 The black hole particle accelerator

The previous subsection, §5.27.10, showed that almost all the center-of-mass energy dur-
ing mass inflation is in the energy of counter-streaming. Thus the black hole acts like an
extravagantly powerful particle accelerator.

Mass inflation is an exponential instability. The nature of the black hole particle accelerator
is that an individual particle spends approximately an equal interval of proper time being
accelerated through each decade of collision energy.

Each baryon in the black hole collider sees a flux ndu
r of dark matter particles per unit

area per unit time, where nd = ρd/md is the proper number density of dark matter particles
in their own frame, and ur is the radial component of the proper 4-velocity, the γv, of the
dark matter through the baryons. The γ factor in ur is the relavistic beaming factor: all
frequencies, including the collision frequency, are speeded up by the relativistic beaming
factor γ. As the baryons accelerate through the collider, they spend a proper time interval
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Figure 13: Collision rate of the black hole collider per e-fold of Lorentz factor, for various
mass accretion rates: Ṁ• = 0.03, 0.01, 0.003, and 10−16. The dark-matter-to-baryon ratio at
the sonic point is ρd/ρb = 0.1 in all cases, and the black hole charge-to-mass is Q•/M• = 0.8,
The various symbols show where different quantum effects, all of which are neglected in
this calculation, are expected to come into play: crosses show where the Unruh temperature
exceeds the plasma temperature; filled circles show where the Weyl curvature scalar C ex-
ceeds the Plank scale; open circles show where the Unruh temperature exceeds the Planck
temperature. The black hole mass is M• = 4 × 106 M⊙, the equation of state is wb = 0.32,
and the conductivity is zero.

63



dτ/d lnur in each e-fold of Lorentz factor ur. The number of collisions per baryon per e-fold
of ur is the dark matter flux (ρd/md)u

r, multiplied by the time dτ/d lnur, multiplied by the
collision cross-section σ. The total cumulative number of collisions that have happened in
the black hole particle collider equals this multiplied by the total number of baryons that
have fallen into the black hole, which is approximately equal to the black hole mass M•

divided by the mass mb per baryon. Thus the total cumulative number of collisions in the
black hole collider is

number of collisions

e-fold of ur =
M•

mb

ρd

md
σur dτ

d lnur
. (262)

Figure 13 shows, for several different accretion rates Ṁ•, the collision rate M•ρdu
rdτ/d ln ur

of the black hole collider, expressed in units of the black hole accretion rate Ṁ•. This collision
rate, multiplied by Ṁ•σ/(mdmb), gives the number of collisions (262) in the black hole. In
the units c = G = 1 being used here, the mass of a baryon (proton) is 1 GeV ≈ 10−54 m. If
the cross-section σ is expressed in canonical accelerator units of femtobarns (1 fb = 10−43 m2)
then the number of collisions (262) is

number of collisions

e-fold of ur = 1045
( σ

1 fb

)

(

300 GeV2

mbmd

)

(

Ṁ•

10−16

)

(

M•ρdu
rdτ/d ln ur

0.03 Ṁ•

)

. (263)

Epoch 2008 particle accelerators are proud of having delivered an inverse femtobarn of lu-
minosity. Equation (263) shows that the black hole accelerator delivers about 1045 more
collisions than that, and it does so in each e-fold of collision energy up to the Planck energy
and beyond.

The calculations illustrated in Figure 13 ignore any quantum effects. The gravitational accel-
eration induces a pressure gradient in the baryons, which causes the baryons to experience a
proper acceleration in their own frame. As first shown by Unruh (1976), a frame undergoing
proper acceleration g will perceive itself to be engulfed in black body radiation with Unruh
temperature

TU =
g

2π
(264)

in Planck units. Figure 13 shows where the Unruh temperature TU exceeds first the baryon
temperature Tb, and subsequently the Planck temperature Tp. In between these two events,
the Weyl curvature scalar C exceeds the Planck scale. Above this scale quantum gravity
presumably comes into play, invalidating the calculation, and the lines in Figure 13 in this
region are therefore shown dashed.
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5.28 ADM formalism

The Arnowitt-Deser-Misner (1962) formalism, also known as the 3+1 formalism, is widely
used in numerical general relativity. For a review, see L. Lehner (2001, CQG 18, R25).

5.28.1 ADM tetrad

The ADM formalism splits the spacetime coordinates xµ into a time coordinate t and spatial
coordinates xi, i = 1, 2, 3,

xµ ≡ {t, xi} , (265)

and evolves the spacetime from one hypersurface of constant time, t = constant, to the next.
At each point of spacetime, the hypersurface of constant time has a unique unit normal γt,
defined to have unit length and to be orthogonal to the spatial tangent axes gi

γt · γt = 1 , γt · gi = 0 i = 1, 2, 3 . (266)

The ADM approach is to work in a tetrad frame γm consisting of the time axis γt together
with the three original spatial tangent axes gi

γm ≡ {γt, γi} ≡ {γt, gi} . (267)

The tetrad metric γmn in the ADM formalism is thus

γmn =

(

1 0
0 γij

)

, (268)

whose time part is orthonormal, and whose spatial part is the same as the spatial part of the
coordinate metric, γij = gij for i, j = 1, 2, 3. The inverse tetrad metric γmn is correspondingly

γmn =

(

1 0
0 γij

)

(269)

whose spatial part γij is the inverse of γij , but is not the same as the spatial part gij of
the inverse coordinate metric gµν . One might say that the ADM approach is semi-tetrad
(my word). The time axis γt is unchanged by a spatial coordinate transformation xi → x′i

(one that leaves the time coordinate t unchanged), and is therefore a spatial coordinate
scalar. The time axis γt is changed by a temporal coordinate transformation t → t′, and
since by definition γt remains of unit length, that transformation must be a Lorentz trans-
formation. The spatial axes γi ≡ gi are changed by both spatial and temporal coordinate
transformations.

Because the definition of the time axis γt is tied to the coordinates, the ADM formalism
does not have a concept of tetrad transformations distinct from coordinate transformations.
Nevertheless, the usual notion of tensor applies: a quantity is a tetrad tensor if and only
if its components transform under (spatial and temporal) coordinate transformations like
(products of) the tetrad axes γm ≡ {γt, gi}. In the ADM formalism there are also spatial

65



coordinate tensors that are not full tetrad tensors. A quantity is a spatial coordinate tensor
if and only if it transforms under purely spatial coordinate transformations like (products
of) the coordinate spatial axes γi ≡ gi. In the ADM formalism, a tetrad tensor is necessarily
also a spatial coordinate tensor (why?).

The time axis γt must be some linear combination of the tangent axes gµ

γt ≡
1

α

(

gt + βigi

)

. (270)

The quantity α is called the lapse, while βi is called the shift. The lapse α is a spatial
coordinate scalar, and the shift βi is a spatial coordinate 3-vector, but neither the shift nor
the lapse is a full tetrad-frame tensor. The vierbein em

µ and inverse vierbein em
µ are

em
µ =

1

α









1 β1 β2 β3

0 1 0 0
0 0 1 0
0 0 0 1









, em
µ =









α 0 0 0
−β1 1 0 0
−β2 0 1 0
−β3 0 0 1









. (271)

In the usual tetrad approach, the vierbein row et
µ = (1/α){1, βi} and the inverse vierbein

column em
t = {α,−βi} would be respectively coordinate and tetrad 4-vectors, but this is not

true in the ADM formalism because tetrad and coordinate transformations are tied together
rather than being independent.

The coordinate metric ds2 ≡ γmne
m

µe
n

νdxµdxν is

ds2 = α2dt2 + γij(dxi − βidt)(dxj − βjdt) . (272)

The coordinate metric gµν is a coordinate tensor as usual, and in particular it is a spatial
coordinate tensor, but it is not a tetrad-frame tensor.

5.28.2 ADM extrinsic curvature

It is customary to introduce the extrinsic curvature Kij , a spatial coordinate (but not
tetrad) tensor, defined by

Kij ≡ gi ·
∂γt

∂xj
= Γitj is a spatial coordinate (but not tetrad) tensor , (273)

which describes how the unit normal γt to the 3-dimensional spatial hypersurface changes
over the hypersurface, and can therefore be regarded as embodying the curvature of the
3-dimensional spatial hypersurface embedded in the 4-dimensional spacetime. The extrinsic
curvature Kij transforms under temporal transformations, but it is neither a coordinate
nor tetrad frame tensor under such transformations. The extrinsic curvature is symmetric,
Kij = Kji, and, from equation (40) with vanishing torsion, has the explicit expression in
terms of the directed time derivative ∂tγij of the spatial metric, and of the vierbein derivatives
dlmn, equation (21),

Kij ≡ 1
2
(∂tγij + ditj + djti) . (274)
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5.28.3 ADM connections

The non-vanishing tetrad connections are

Γtit = −Γitt = − dtti , (275a)

Γijt = Kij − ditj , (275b)

Γitj = −Γtij = Kij , (275c)

Γijk =
1

2

(

∂γij

∂xk
+

∂γik

∂xj
− ∂γjk

∂xi

)

, (275d)

where the relevant vierbein derivatives are

dtti = − 1

α

∂α

∂xi
, ditj =

γik

α

∂βk

∂xj
are spatial coordinate (not tetrad) tensors . (276)

The tetrad connections (275a)–(275c) involving at least one time index t are spatial coor-
dinate tensors, but they are not tetrad tensors. The purely spatial tetrad connections Γijk,
equation (275d) constitute neither a spatial coordinate tensor nor a tetrad tensor (note that
Γijk, like the spatial tangent axes gi, transform under temporal coordinate transformations
despite the absence of temporal indices).

5.28.4 ADM Riemann tensor

The Riemann tensor is a tetrad tensor. Its components Rklmn are

Rtitj = −DtKij − Kk
i Kjk −

1

α
D

(3)
i D

(3)
j α , (277a)

Rtijk = D
(3)
k Kij − D

(3)
j Kik , (277b)

Rijkl = KilKjk − KikKjl + R
(3)
ijkl , (277c)

where the superscript (3) denotes purely spatial, 3D quantities, so that D
(3)
i is the covariant

spatial derivative, and R
(3)
ijkl is the spatial Riemann tensor, both considered confined to the

3D spatial hypersurface. The notation Dt for the tetrad-frame covariant time derivative in
equation (277a) is a bit of an abuse of notation, because Kij is not a tetrad-frame tensor;
DtKij signifies what the covariant time derivative of Kij would be if Kij were a tetrad tensor.
Specifically,

DtKij = ∂tKij − Γk
itKjk − Γk

jtKik = ∂tKij − 2 Kk
i Kjk +

Kik

α

∂βk

∂xj
+

Kjk

α

∂βk

∂xi
. (278)

The expressions (274) for the extrinsic curvature Kij and (277a) for the Riemann components
Rtitj can also be written

Kij ≡
1

2α

(

∂γij

∂t
−Lβγij

)

, (279)

Rtitj = − 1

α

(

∂Kij

∂t
− LβKij

)

+ Kk
i Kjk −

1

α
D

(3)
i D

(3)
j α , (280)

where Lβ is the Lie derivative in the β direction, a concept to be met later in the context of
perturbation theory.
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5.28.5 ADM Ricci and Einstein tensors

The Ricci tensor Rkm ≡ γlnRklmn is, like the Riemann tensor, a tetrad tensor. Its components
are

Rtt = − ∂tK − KijKij −
γij

α
D

(3)
i D

(3)
j α , (281a)

Rti = D
(3)
j Kj

i − D
(3)
i K , (281b)

Rij = −DtKij − KKij −
1

α
D

(3)
i D

(3)
j α + R

(3)
ij , (281c)

where K ≡ γijKij, and R
(3)
ik ≡ γjlR

(3)
ijkl is the Ricci tensor confined to the 3D spatial hyper-

surface. The Ricci scalar R ≡ γkmRkm is

R = − 2 ∂tK − K2 − KijKij −
2

α
γijD

(3)
i D

(3)
j α + R(3) , (282)

where R(3) ≡ γijR
(3)
ij is the Ricci scalar confined to the 3D spatial hypersurface.

The Einstein tensor Gkm ≡ Rkm − 1
2
γkmR is

Gtt =
1

2

(

K2 − KijK
ij − R(3)

)

, (283a)

Gti = D
(3)
j Kj

i − D
(3)
i K , (283b)

Gij = −DtKij + γij ∂tK − KKij +
1

2
γij

(

K2 + KklKkl

)

− 1

α

(

D
(3)
i D

(3)
j α − γij γklD

(3)
k D

(3)
l α

)

+ G
(3)
ij , (283c)

where G
(3)
ij ≡ R

(3)
ij − 1

2
γijR

(3) is the Einstein tensor confined to the 3D spatial hypersurface.

5.28.6 Integrating the ADM equations

The ADM formalism takes the fundamental spacetime variables to be the 6 components γij

of the spatial metric tensor. The lapse α and shift βi are regarded as adjustable quantities,
reflecting the 4 coordinate freedoms of general relativity. A variety of approaches have been
developed to choose the lapse and shift so as to try to maintain numerical stability.

According to the usual rules for integrating partial differential equations from initial condi-
tions, it is necessary first to set up initial conditions on the spatial hypersurface at initial
time t = 0 (say). Then the equations can be integrated forward in time. The equations
involving time derivatives are: first, equation (274), which gives ∂γij/∂t in terms of the
extrinsic curvature Kij and other quantities depending on the lapse and shift; and second,
equation (283c), which gives ∂Kij/∂t in terms of the spatial components Gij of the Einstein
tensor and a bunch of other spatial quantities. Thus the evolution equations involve second
order time derivatives of γij.
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Besides the evolution equations (and whatever equations one chooses to govern the lapse and
shift), there are 4 equations, called the constraint equations, that involve no time derivatives,
namely the Einstein equations (283a) for Gtt and (283b) for Gti. The initial conditions on
the t = 0 hypersurface must be arranged to satisfy these 4 constraints, but thereafter the
Bianchi identities ensure that the conditions are automatically satisfied, modulo numerical
instabilities. Equation (283a) for Gtt is called the Hamiltonian constraint (or scalar
constraint), while equations (283b) for Gti are called the momentum constraints (or
vector constraints). Setting up the initial conditions to satisfy these constraints is not an
easy matter.
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