Homework 2 - Due September, 20

2.1. (20 pt.) Point charges Q_{1} and Q_{2} are, respectively, located at $(4,0,-3)$ and $(2,0,1)$. If $Q_{2}=4$ nC , find Q_{1} such that:
a) The E vector at $(5,0,6)$ has no z-component;
b) The force on a test charge at $(5,0,6)$ has no x-component.
2.2. (15 pt.) The point charge Q is located at point $P(0,-4,0)$, while a 10 nC charge is uniformly distributed along a semicircular ring as shown in Figure 1. Find the value of Q such that $E(0,0,0)$ $=0$.

Figure 1
2.3. (15 pt .) If spherical surfaces $r=1 \mathrm{~m}$ and $r=2 \mathrm{~m}$, respectively (see Figure 2 as a hint), carry uniform surface charge densities $8 \mathrm{nC} / \mathrm{m}^{2}$ and $-6 \mathrm{nC} / \mathrm{m}^{2}$, find D at $r=3 \mathrm{~m}$.

Figure 2
2.4. (20 pt.) Three point charges $Q_{1}=1 \mathrm{mC}, Q_{2}=-2 \mathrm{mC}$, and $Q_{3}=3 \mathrm{mC}$ are, respectively, located at $(0,0,4),(-2,5,1)$, and $(3,-4,6)$.
a) Find the potential V_{P} at $P(-1,1,2)$;
b) Calculate the potential difference V_{PQ} if Q is $(1,2,3)$.
2.5. (10 pt.) If $V=2 x^{2}+6 y^{2} \mathrm{~V}$ in free space, find the energy stored in a volume defined by $-1 \leq x$ $\leq 1,-1 \leq y \leq 1$, and $-1 \leq z \leq 1$.
2.6. (10 pt.) In a slab of Teflon $\left(\varepsilon_{r}=2.1\right)$, the electric field is $E=6 u_{x}+12 u_{y}-20 u_{z} V / m$. Find \boldsymbol{D} and \boldsymbol{P}.
2.7. (10 pt.) Two point charges in free space are separated by distance d and exert a force 2.6 nN on each other. The force becomes 1.5 nN when the free space is replaced by a homogeneous dielectric material. Calculate the dielectric constant of the material.

