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1 Definite Integrals

A small amount of knowledge about limits will be required for this first
section as we introduce a formal definition of the definite integral.

We define the definite integral of a real valued continuous function f(z) on
the interval [a, b] to be,

/bf(x)dx = lim zn:f(xi)dx,
@ =1

n—oo £

where dz are equal subintervals of [a,b] and z; are sampling points of each
subinterval.

Here we have chosen to define the subintervals to be equal in length for
convenience. We call f(z) the integrand, a and b the limits of integration,
and |[a, b] the interval of integration.

Now we have eliminated some of the terminology, let us look at where this
definition comes from. The definiton comes from efforts in the past to try
and find areas under curves. If we consider a curve defined by f(x) that is
continuous and real-valued, then how can we find the area between the curve,
the x-axis and bounded by x = a and x = b7 As you may have guessed from
the definition, we can divide the interval [a, b] into n smaller subintervals and
approximate the area between the curve and the x-axis in the subinterval as
that of a rectangle. To do this we need to find the height of the rectangle
which we obtain from choosing a sampling point, x;, of the ith subinterval.

In figure 1 we can see a curve that has the interval [a, b] split into several
subintervals. In general we can split the interval into n subintervals each of
length 0x = b_T“ We expect that the more subintervals we have the better
the approximation of area will be and in the limit that n — oo, we will have
calculated the area under the curve. Thus we can write,

A= lim Zf(wi)éx.
i=1

We note from the figure that the sampling point x; is chosen to be the end
of each subinterval for ease of calculation. Let us now look at an example to
see this method in action.
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Figure 1: Approximating the area under a curve.

Example 1.1

2
Find / zdx
0

We note that the area can easily be worked out as it is simply the area of
a triangle. The first thing we do is divide the interval of integration into n

subintervals: I, I, ...... .
j {—Q(i_ D %} |

n 'n
This corresponds to an interval length of dx = 2;710 = % We choose x; = %
which is the end of the interval I;. Thus we have f(z;) = 2. The total area

of the region is then:

n

A:Zf(asi)éx: %%:%Zz
i=1

=1 i=1

We note that > ;¢ = sn(n + 1), and thus we have.

2
A:4(n —|—n):2+z
2n2 n
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Now taking the limit as n — oo we finally get:
A=2

That was a relatively easy example but you could try it with z? or other
functions if you so wish. Even though the answer was obvious we had a lot
of work to do just to get it. We would also have a lot of work to do whatever
function we choose and this brings us to the next section.

2 The Fundamental Theorem of Calculus

Here we introduce the Fundamental Theorem of Calculus. The theorem is
usually expressed in two parts and a brief explanation of what each part
means will follow. Often they are introduced in a different order in some
texts and resources so don’t worry if you come across that.

If F' is defined by,
Flz) = / oL

then,

This neat result shows us that integration is the inverse process of differen-
tiation.

If f is a continuous, real valued function on the interval [a, b], and F' is the
indefinite integral (sometimes called the anti-derivative or primitive) of f
then,

[ #e)ds = FO) - Fla) = F@)

This just relates the indefinite integral to the definite integral. This means
that all we have to do now to evaluate an integral is look for a function F'(x)
that differentiates to become the integrand, f(z).

I will not provide a proof of either of these two theorems as they are dealt
with exstensively elsewhere. I think the visual calculus web site has one of
the best walkthroughs of the proof available on the web. One can access
them from [this|[[] page.

thttp://archives.math.utk.edu/visual.calculus/4/ftc.9/


http://archives.math.utk.edu/visual.calculus/4/ftc.9/

3 Rules of integration

I will first list some standard integrals which are general results of indefinite
integration of some simple functions. Then I will list the methods used for
dealing with combinations of these functions.

3.1 Standard Integrals

In differentiation we remember the general results of differentiating simple
functions and we also remember rules that allow us to differentiate combi-
nations of these simple functions. With integrals we can do the same thing.
Now we know that the primitive is simply a function we can differentiate to
get the integrand we can work out some general results for simple functions
quite easily. The following is a list of some standard integrals you may come
across.

° /kd:z::karc

o [ tan(z)dx = —In|cos(z)| + ¢

° edr =€+ ¢

You will notice the inclusion of an arbitrary constant, ¢, in the above list
of indefinite integrals. Just a brief note on why this is so. We know from
differential calculus that the derivative of a constant is zero. Therefore if F'(x)
is the indefinite integral of f(z), then so is F(z) + ¢ since &L (F(z) + ¢) =
L)+ Le= f(z)+0= f(a).



This is a brief list of the most common functions, but more detailed lists can
be found in most text books dealing with integration. I suggest that you find
one that you like and know where to find it if needed.

3.2 Properties of Integrals
3.2.1 Integrating a sum of functions

Suppose from the fundamental theorem that F'(z) = f(z) and G'(x) = g(z),
then:

From the derivative of a sum we have:

(F(x) + G(z)) = F'(z) + G'(x) = f(z) + g()

J @+ g@do = [ sz + [ g

3.2.2 Integrating a Constant Multiple of a Function

For a function F that is the primitive of f and again borrowing some rules
from differentiation:

KF'(2) = kf(2)
:>/kf Ydx =k /f

3.2.3 Swapping Limits

Going right back to our definition of a definite integral we find that:

/bf(x)dx = lim if(xz)éx
o n—00 P

Where we had dz = b_T“. It then follows that:



/ba f(z)dz = lim Zf(:zi)éx

n—oo <

Where this time dx = “T_b Now:

b n
L b—a
= Jm 310 ()
3 fe) (—“ - b)
TS n

:_1Aaﬂxﬂx

3.2.4 Splitting Limits

Again we must use our definition of a definite integral.

[ faite = tim 3 ) ()
a i=1
=t > st (V0 )
= 7}1_)11;02‘]0(371) <Z)—Ta) +n11_{202f($z) (C ; b)

_Lv@m+47@m

4 Integration by Substitution

The goal of integration by substitution is to turn a difficult integral into an
easier one through a suitable substitution.
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Example 4.1
Consider the following indefinite integral.
/ r?dx
3+ 1
We notice that the integral can be simplified if we use the following substi-
tution:

u=1z>+1= du=32%dx
Then,

z2dx 1 [du
/x3+1_§ m
:11 lu| + ¢
71

= 1ln\:LB—i—l\ +c

3
We turned this difficult integral into one that was more managable by a
carefully chosen substitution. The general form of integration by substitution
stems from the chain rule of differentiation. Thus for a function F' which is
the anti-derivative of f so F'(u) = f(u) we have,

d d du

o E9(@)) = 2 F(u) o = f(u)g'(x) = flg(2))g'(x)

Therefore,

[ oo an = [ fdul )

Here we have assumed that u = g(x). Students new to the method of in-
tegration by substitution often wonder how one can tell that a particular
problem can be solved by this method. The short answer is that it takes
a lot of practice and sometimes a lot of trial and error. If you do enough
practice problems however, you will soon start to recognise which integrals
are suitable for the method of substitution and which ones are not.

4.1 Trigonometric Substitutions

In some integrals we can make a trigonometric substitution that will reduce
the integral to a simpler form. Lets look at an example to see how it works.
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Example 4.1.1

dz for some real constant a.

1
Find / e
Va2 — 12
So we want to set « to a function g(u) that will simplify the integrand enough
to perform the integration. We will choose # = asin(u) for reasons that will
hopefully become very clear as we move through the problem, but which I
will state explicitly later on. So with this choice for x we have:

d
£ = acos(u)
Thus:

a cos(u)du

/ J%: \/aQ(—)cZ;siDQ(u)
- S

~ [ au

=u-+c

(T
= sin (—)+c
a

We notice a couple of things while getting to this answer. First we notice
that the substitution is not immediately obvious but once we see how the
trigonometric identity (sin®(u) + cos?(u) = 1) changes it, then it becomes
quite clear. Secondly we note that to get the answer in terms of x, g(u) must
have an inverse function, which in this case it did.

There are several standard substitutions where the integrand contains a fac-
tor similar to that in the example. They are listed below.

Factor  Substitution (for z)
a? —x2  asin(u) or asech(u)
va?+z? atan(u) or asinh(u)
)

22 —a? acosh(u) or asec(u

We choose these substitutions because of their corresponding trigonometric
and hyperbolic identities which more often than not simplify the integrand
in a similar fashion to the example above.



5 Integration by Parts

Just like integration by substitution is associated with the chain rule of dif-
ferentiation, integration by parts is associated with the product rule of dif-
ferentiation. Lets remind ourselves of what the product rule is:

L f@)gla) = F@) L+ ()L )

If we integrate equation (2) we obtain,

0= [ 1@ P+ [ gLt

and rearranging we finally get.

[ 1@ s = figle) - [ o)

You will often see this written in the following shorthand way.

/udv:uv—/vdu

where v = f(z) and v = g(x). We now look at an example to see this in
action.

Example 5.1

Find / zetdx

We choose u = x and dv = e*dx. That gives us, du = dx and v = e*. Now,

/xezdx = ze® — /exda:

=zxe' —e" +c¢
You can check that this is correct by differentiating it with respect to x.
5.1 Applications of Integration by Parts

5.1.1 Reduction Formula

Ocassionally one will have to apply the method of integration by parts several
times before arriving at a soultion. This can be tiresome but also unnecessary
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because in many cases a reduction formula can be found that will speed up
the process. Take for example the following integral.

Example

Find / 2etdx

Set u = 2% and dv = e*dx and then we obtain, du = 32?dx and v = €.
Applying integration by parts:

/xSexdx = p3e” — 3/3:26Id:v

We notice that after we have applied the method of integration by parts that
we are left with an integral on the right hand side that requires us to apply
the method of integration by parts again. To make this simpler we note that:

/x"e’”dw = z"e* — n/x”_lexdx
n _x
I, =2"e" —nl,_4

We can now apply this reduction formula to our example above as many
times as needed.

/xgexdx = g3e” — 3/w26xd:c
= 13" — 3 (9326”” — Q/xexdx)
= z3e®” — 3 (xQex —2 (xex — /6%35))

= (2" =32 + 62— 6) " + ¢

This has helped us because we no longer need to choose a v and dv and apply
the integration by parts from scratch.

5.1.2 Integrals Involving Trigonometric Functions

Another application of integration by parts is when dealing with integrals of
the form [ e* sin(bx)dz and [ e cos(bx)dz.

Lets take a look at an example.
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Example

Find /e‘w sin(bz)dz

Set u = e and dv = sin(bx)dzr, then du = aedx and v = —3 cos(bx).
Applying integration by parts:

e cos(bx) a

/e“z sin(bz)dx = —— + 7 / e®® cos(br)dx

We note we will have to apply integration by parts again to the integral on
the right hand side. At this point you may also be thinking that we could
keep doing this forever, but for now lets just apply integration by parts once
more and see what we get.

Set u = ¢ and dv = cos(bz)dz, then du = ae®dz and v = 3 sin(bz).
Applying integration by parts:

e sin(bxr) a

/e” cos(bx)dx = —3 3 /e‘”C sin(bx)dx

Now our original integral / e sin(bx)dx = I looks like this:

e cos(bx) a (€™ sin(bx) a/ ,
I = —-—— —_ _— - azr
2 + 2 ( 2 ;e sin(bz)dx
@

=— ; + B e sin(bx) — Z—QI
2

1

I+ %I = %e‘” sin(bz) — Ee” cos(bx)
b’ + a? a o . | .
[( 2 ) = ¢ sin(bz) — 5e cos(bx)
7€ (asin(bx) — bcos(br)) iy
b + a?

And thus we arrive at an answer for our original integral when it seemed we
may get stuck applying integration by parts forever. Of course this technique
is not only limited to the forms of integrals I gave above. Now the technique
has been introduced and you have seen it in action it may become more ap-
parent in other problems. In essence one just needs to recognise when you’ve
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arrived back at the original integral after several applications of integration
by parts.
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