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v;locxty. That this would imply that terrestrial electrical machinery would behave
differently In winter and summer does not appear to have raised any doubts!

After Ma(‘:helson and Morley’s experiment, a long controversy ensued ana
thou_gh thlls 1s of great historical interest, it will not be recounted in this book Thé
special Prmciple is now firmly established and is accepted on the grounds thét the
conc!u519ns vyhich may be deduced from it are everywhere found to be in
conformity with experiment and also because it is felt to possess a priori a high
degree .Of plausibility. A description of the steps by which it ultimately came to be
appreciated that the principle was of quite general application would therefore be
superfluous in an introductory text, It is, however, essential for our future
development of the theory to understand the prime difficulty preventing an early
acceptance of the idea that the electromagnetic laws are in conformity with the
special principle. .

Consider the two inertial frames §, 5. Suppose that an observer employing §
measures the velocity of a light pulse and finds it to be ¢. If the velocity of the same

g T

C=c—u {(3.5)
and it is clear that, in general, the magnitudes of the vectors €, e will be different. It
appears to follow, therefore, that either Maxwell’s equations (3.1)-(3.4) must.be
modified, or the special principle of relativity abandoned for electromagnetic
phenome?:a. Attempts were made (e.g. by Ritz) to modify Maxwell’s equations
but certain consequences of the modified equations could not be conﬁrmed’
exper.mllentaﬂy. Since the special principle was always found to be valid, the only
remaining alt?rnative was to reject equation (1.1} and to replace it by a;lother in
Fonfgrmlty with the experimental result that the speed of light is the same in all
inertial frames. As will be shown in the next section, this can only be done at the
expense of a radical revision of our intuitive ideas concerning the nature of space
and time and this was very understandably strongly resisted.

4. Lorentz transformations. Minkowski space—time

Th; arg?ment o; this section will be founded on the following three postulates:
ostulate I. A particle free to move under no forces h ity in
ostula a5 const:

any inertial frame, antvelocity in

‘ Pos'tu!ate 2. The speed of light relative to any inertial frame is ¢ in all
directions,

Postulate 3. The geometry of space is Euclidean in any inertial frame.

Let the reference frame S comprise rectangular Cartesian axes Cxyz. We shall
assume that the coordinates of a point relative to this frame are measured by the
usual procedure and employing a measuring scale which is stationary in § (it is
necessary tg state this precaution, since 1t will be shown later that the length of a
bar is not independent of its motion). It will also be supposed that standard

atomic clocks, stationary relative to S, are distributed throughout space and are
all synchronized with a master-clock at O. A satisfactory synchronization
procedure would be as follows: Warn observers at all clocks thata fight source at
O will commence radiating at ¢ = t,. When an observer at a point P first receives
light from this source, he is to set the clock at P to read ty + OP/c, i.c.it is assumed
that light travels witha speed c relative to S, as found by experiment. The position
and time of an event can now be specified relative to § by four coordinates
(x, ¥, 7. 1), t being the time shown on the clock which is contiguous to the event.
We shall often refer to the four numbers (x, y, z, t) as an event.

Let O%7Z be rectangular Cartesian axes determining the frame S (to be precise,
these are rectangular as seen by an observer stationary in S) and suppose that
clocks at rest relative to this frame are synchronized with a master at O. Any event
can now be fixed relative to § by four coordinates (%, y, 7, T ), the space coordinates
being measured by scales which are at rest in S and the time coordinate by the
contiguous clock at rest in S, If (x, y, z, 1), (X, y, Z, T) relate to the same event, in
this section we are concerned to find the equations relating these corresponding
coordinates. It is helpful to think of these transformation equations as a
dictionary which enables us to translate a statement relating to any set of events
from the S-language to the S-language (or vice versa).

The possibility that the length of a scale and the rate of a clock might be affected
by uniform motion relative to a reference frame was ignored in early physical
theories. Velocity measurements were agreed to be dependent upon the reference
frame, but lengths and time measurements were thought to be absolute. In
relativity theory, as will appear, very few quantities are absolute, i.e. are
independent of the frame in which the measuring instruments are at rest.

To comply with Postulate 1, we shall assume that each of the coordinates
(%, ¥, z, T} is a linear function of the coordinates (x, ¥, z, t). The inverse relation-
ship is then of the same type. A particle moving uniformly in § with velocity

{v,, v}, v,) will have space coordinates (x, y, z) such that

X = Xog+Ugt, ¥= Yotv,f, Z=2y+01 4.0

If linear expressions in the coordinates (X,y,%,T) are now substituted for
(x, v, 2, ), it will be found on solving for (X, ¥, Z,) that these quantities are linear in
T and hence that the particle’s motion is uniform reiative to S. In fact, it may be
proved that only a linear transformation can satisfy the Postulate I
Now suppose that at the instant ¢ = ¢, a light source situated at the point P,
{Xo» Yor 20} in S radiates a pulse of short duration. At any later instant ¢, the
wavefront will occupy the sphere whose centre is P, and radius c(t —to). This has
equation
(x = xo)* + (¥ — o) +(z —zof =P - to) (4.2)
Let (o, ¥or Zo) be the coordinates of the light source as observed from S at the

instant f = 7, the short pulse is radiated. At any later instant 7, in accordance with
Postulate 2, the wavefront must also appear from § to occupy a sphere of radius




