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Outline

● Formalism
● Derivations
● Backup-Naur FORM
● Left-most and right-most derivations
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Productions

● A production  has the form variable (head) ->
string of variables and terminals (body).

● Convention:
● A, B, C,…  and also S are variables.
● a, b, c,… are terminals.
● …, X, Y, Z are either terminals or variables.
● …, w, x, y, z are strings of terminals only.
● α, β, γ,… are strings of terminals and/or variables.
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Informal Comments

● A context-free grammar  is a notation for
describing languages.

● It is more powerful than finite automata or
RE’s, but still cannot define all possible
languages.

● Useful for nested structures, e.g.,
parentheses in programming languages.
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Derivations – Formalism

● We say αAβ => αγβ if A -> γ is a production.
● Example: S -> 01; S -> 0S1.
● S  => 0S1 => 00S11 => 000111.
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Informal Comments – (2)

● Basic idea is to use “variables” to stand for
sets of strings (i.e., languages).

● These variables are defined recursively, in
terms of one another.

● Recursive rules (“productions”) involve only
concatenation.

● Alternative rules for a variable allow union.
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Example: CFG for { 0n1n | n > 1} 

● Productions:
S -> 01
S -> 0S1

● Basis: 01 is in the language.
● Induction: if w is in the language, then so is

0w1.
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CFG Formalism

● Terminals  = symbols of the alphabet of the
language being defined.

● Variables   = nonterminals  = a finite set of
other symbols, each of which represents a
language.

● Start symbol  = the variable whose
language is the one being defined.
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Example: Formal CFG

● Here is a formal CFG for { 0n1n | n > 1}.
● Terminals = {0, 1}.
● Variables = {S}.
● Start symbol = S.
● Productions =

S -> 01

S -> 0S1
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Derivations – Intuition

● We derive  strings in the language of a CFG
by starting with the start symbol, and
repeatedly replacing some variable A by the
body of one of its productions.
● That is, the “productions for A” are those that have

head A.
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Derivations – Intuition

● We derive  strings in the language of a CFG
by starting with the start symbol, and
repeatedly replacing some variable A by the
body of one of its productions.
● That is, the “productions for A” are those that have

head A.
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Iterated Derivation

● =>* means “zero or more derivation steps.”
● Basis: α =>* α for any string α.
● Induction: if α =>* β and β => γ, then α =>*
γ.
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Example: Iterated Derivation

● S -> 01; S -> 0S1.
● S => 0S1 => 00S11 => 000111.
● Thus S =>* S; S =>* 0S1; S =>* 00S11; S

=>* 000111.
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Sentential Forms

● Any string of variables and/or terminals
derived from the start symbol is called a
sentential form.

● Formally, α is a sentential form iff S =>* α.
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Language of a Grammar

● If G is a CFG, then L(G), the language of G,
is {w | S =>* w}.

● Example: G has productions S -> ε and S ->
0S1.

● L(G) = {0n1n | n > 0}.
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Context-Free Languages

● A language that is defined by some CFG is
called a context-free language.

● There are CFL’s that are not regular
languages, such as the example just given.

● But not all languages are CFL’s.
● Intuitively: CFL’s can count two things, not

three.
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BNF Notation

● Grammars for programming languages are
often written in BNF (Backus-Naur Form ).

● Variables are words in <…>; Example:
<statement>.

● Terminals are often multicharacter strings
indicated by boldface or underline; Example:
while or WHILE.
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BNF Notation – (2)

● Symbol ::= is often used for ->.
● Symbol | is used for “or.”

● A shorthand for a list of productions with the same
left side.

● Example: S -> 0S1 | 01 is shorthand for S ->
0S1 and S -> 01.
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BNF Notation – Kleene Closure

● Symbol … is used for “one or more.”
● Example: <digit> ::= 0|1|2|3|4|5|6|7|8|9

<unsigned integer> ::= <digit>… 
● Translation: Replace α… with a new variable A

and productions A -> Aα | α.
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Example: Kleene Closure

● Grammar for unsigned integers can be
replaced by:

U -> UD | D
D -> 0|1|2|3|4|5|6|7|8|9
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BNF Notation: Optional Elements

● Surround one or more symbols by […] to
make them optional.

● Example: <statement> ::= if <condition>
then <statement> [; else <statement>]

● Translation: replace [α] by a new variable A
with productions A -> α | ε.
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Example: Optional Elements

● Grammar for if-then-else can be replaced
by:

S -> iCtSA

A -> ;eS | ε
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BNF Notation – Grouping

● Use {…} to surround a sequence of symbols
that need to be treated as a unit.
● Typically, they are followed by a … for “one or

more.”
● Example: <statement list> ::= <statement>

[{;<statement>}…]
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Translation: Grouping

● Create a new variable A for {α}.
● One production for A: A -> α.
● Use A in place of {α}.
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Example: Grouping

L -> S [{;S}…]
● Replace by L -> S [A…]      A -> ;S

● A stands for {;S}.
● Then by L -> SB   B -> A… | ε    A -> ;S

● B stands for [A…] (zero or more A’s).
● Finally by L -> SB  B -> C | ε  C -> AC | A

A -> ;S
● C stands for A… .
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Leftmost and Rightmost
Derivations

● Derivations allow us to replace any of the
variables in a string.
● Leads to many different derivations of the same

string.
● By forcing the leftmost variable (or

alternatively, the rightmost variable) to be
replaced, we avoid these “distinctions
without a difference.”
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Leftmost Derivations

● Say wAα =>lm wβα if w is a string of
terminals only and A -> β is a production.

● Also, α =>*lm β if α becomes β by a
sequence of 0 or more =>lm steps.
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Example: Leftmost Derivations

● Balanced-parentheses grammar:        
S -> SS | (S) | ()

●  S =>lm SS =>lm (S)S =>lm (())S =>lm (())()
● Thus, S =>*lm (())()
● S => SS => S() => (S)() => (())() is a

derivation, but not a leftmost derivation.
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Rightmost Derivations

● Say αAw =>rm αβw if w is a string of
terminals only and A -> β is a production.

● Also, α =>*rm β if α becomes β by a
sequence of 0 or more =>rm steps.
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Example: Rightmost Derivations

● Balanced-parentheses grammar:         
● S -> SS | (S) | ()

●  S =>rm SS =>rm S() =>rm (S)() =>rm (())()
● Thus, S =>*rm (())()
● S => SS => SSS => S()S => ()()S => ()()() is

neither a rightmost nor a leftmost derivation.
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IN-class Exercise

● function = 

● if(condition) then
● statement
● else
● statement

● the gramma for this if-then-else is

S -> iCtSA  (if <condition> then <statement> A)

A -> ;eS | ε (;else<statement>|ε)
● please design an automata to simulate the compiler.

● how to write a compiler program for if-then-else statement
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