
1

Introduction to Automata Theory,
Language and computation

Shen Lu
shenlu@mail.usf.edu

Department of Computer Science and
Engineering

University of South Florida

2

Outline

● Formalism
● Derivations
● Backup-Naur FORM
● Left-most and right-most derivations

3

Productions

● A production has the form variable (head) ->
string of variables and terminals (body).

● Convention:
● A, B, C,… and also S are variables.
● a, b, c,… are terminals.
● …, X, Y, Z are either terminals or variables.
● …, w, x, y, z are strings of terminals only.
● α, β, γ,… are strings of terminals and/or variables.

4

Informal Comments

● A context-free grammar is a notation for
describing languages.

● It is more powerful than finite automata or
RE’s, but still cannot define all possible
languages.

● Useful for nested structures, e.g.,
parentheses in programming languages.

5

Derivations – Formalism

● We say αAβ => αγβ if A -> γ is a production.
● Example: S -> 01; S -> 0S1.
● S => 0S1 => 00S11 => 000111.

6

Informal Comments – (2)

● Basic idea is to use “variables” to stand for
sets of strings (i.e., languages).

● These variables are defined recursively, in
terms of one another.

● Recursive rules (“productions”) involve only
concatenation.

● Alternative rules for a variable allow union.

7

Example: CFG for { 0n1n | n > 1}

● Productions:
S -> 01
S -> 0S1

● Basis: 01 is in the language.
● Induction: if w is in the language, then so is

0w1.

8

CFG Formalism

● Terminals = symbols of the alphabet of the
language being defined.

● Variables = nonterminals = a finite set of
other symbols, each of which represents a
language.

● Start symbol = the variable whose
language is the one being defined.

9

Example: Formal CFG

● Here is a formal CFG for { 0n1n | n > 1}.
● Terminals = {0, 1}.
● Variables = {S}.
● Start symbol = S.
● Productions =

S -> 01

S -> 0S1

10

Derivations – Intuition

● We derive strings in the language of a CFG
by starting with the start symbol, and
repeatedly replacing some variable A by the
body of one of its productions.
● That is, the “productions for A” are those that have

head A.

11

Derivations – Intuition

● We derive strings in the language of a CFG
by starting with the start symbol, and
repeatedly replacing some variable A by the
body of one of its productions.
● That is, the “productions for A” are those that have

head A.

12

Iterated Derivation

● =>* means “zero or more derivation steps.”
● Basis: α =>* α for any string α.
● Induction: if α =>* β and β => γ, then α =>*
γ.

13

Example: Iterated Derivation

● S -> 01; S -> 0S1.
● S => 0S1 => 00S11 => 000111.
● Thus S =>* S; S =>* 0S1; S =>* 00S11; S

=>* 000111.

14

Sentential Forms

● Any string of variables and/or terminals
derived from the start symbol is called a
sentential form.

● Formally, α is a sentential form iff S =>* α.

15

Language of a Grammar

● If G is a CFG, then L(G), the language of G,
is {w | S =>* w}.

● Example: G has productions S -> ε and S ->
0S1.

● L(G) = {0n1n | n > 0}.

16

Context-Free Languages

● A language that is defined by some CFG is
called a context-free language.

● There are CFL’s that are not regular
languages, such as the example just given.

● But not all languages are CFL’s.
● Intuitively: CFL’s can count two things, not

three.

17

BNF Notation

● Grammars for programming languages are
often written in BNF (Backus-Naur Form).

● Variables are words in <…>; Example:
<statement>.

● Terminals are often multicharacter strings
indicated by boldface or underline; Example:
while or WHILE.

18

BNF Notation – (2)

● Symbol ::= is often used for ->.
● Symbol | is used for “or.”

● A shorthand for a list of productions with the same
left side.

● Example: S -> 0S1 | 01 is shorthand for S ->
0S1 and S -> 01.

19

BNF Notation – Kleene Closure

● Symbol … is used for “one or more.”
● Example: <digit> ::= 0|1|2|3|4|5|6|7|8|9

<unsigned integer> ::= <digit>…
● Translation: Replace α… with a new variable A

and productions A -> Aα | α.

20

Example: Kleene Closure

● Grammar for unsigned integers can be
replaced by:

U -> UD | D
D -> 0|1|2|3|4|5|6|7|8|9

21

BNF Notation: Optional Elements

● Surround one or more symbols by […] to
make them optional.

● Example: <statement> ::= if <condition>
then <statement> [; else <statement>]

● Translation: replace [α] by a new variable A
with productions A -> α | ε.

22

Example: Optional Elements

● Grammar for if-then-else can be replaced
by:

S -> iCtSA

A -> ;eS | ε

23

BNF Notation – Grouping

● Use {…} to surround a sequence of symbols
that need to be treated as a unit.
● Typically, they are followed by a … for “one or

more.”
● Example: <statement list> ::= <statement>

[{;<statement>}…]

24

Translation: Grouping

● Create a new variable A for {α}.
● One production for A: A -> α.
● Use A in place of {α}.

25

Example: Grouping

L -> S [{;S}…]
● Replace by L -> S [A…] A -> ;S

● A stands for {;S}.
● Then by L -> SB B -> A… | ε A -> ;S

● B stands for [A…] (zero or more A’s).
● Finally by L -> SB B -> C | ε C -> AC | A

A -> ;S
● C stands for A… .

26

Leftmost and Rightmost
Derivations

● Derivations allow us to replace any of the
variables in a string.
● Leads to many different derivations of the same

string.
● By forcing the leftmost variable (or

alternatively, the rightmost variable) to be
replaced, we avoid these “distinctions
without a difference.”

27

Leftmost Derivations

● Say wAα =>lm wβα if w is a string of
terminals only and A -> β is a production.

● Also, α =>*lm β if α becomes β by a
sequence of 0 or more =>lm steps.

28

Example: Leftmost Derivations

● Balanced-parentheses grammar:
S -> SS | (S) | ()

● S =>lm SS =>lm (S)S =>lm (())S =>lm (())()
● Thus, S =>*lm (())()
● S => SS => S() => (S)() => (())() is a

derivation, but not a leftmost derivation.

29

Rightmost Derivations

● Say αAw =>rm αβw if w is a string of
terminals only and A -> β is a production.

● Also, α =>*rm β if α becomes β by a
sequence of 0 or more =>rm steps.

30

Example: Rightmost Derivations

● Balanced-parentheses grammar:
● S -> SS | (S) | ()

● S =>rm SS =>rm S() =>rm (S)() =>rm (())()
● Thus, S =>*rm (())()
● S => SS => SSS => S()S => ()()S => ()()() is

neither a rightmost nor a leftmost derivation.

31

IN-class Exercise

● function =

● if(condition) then
● statement
● else
● statement

● the gramma for this if-then-else is

S -> iCtSA (if <condition> then <statement> A)

A -> ;eS | ε (;else<statement>|ε)
● please design an automata to simulate the compiler.

● how to write a compiler program for if-then-else statement

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

