
1 Parabola as a limit of an ellipse

A parabola can be obtained by blowing up the major axis of an ellipse but
at the same time shift the ellipse such that its focal point is in the origin.

Proof. Take an ellipse with left focal point in the origin. It is defined via

(x− ae)2

a2
+
y2

b2
= 1 (1)

(Draw this.) We want to take the limit of a→∞ in a smart way, since blunt
limit creates two straight lines. The idea is to keep the nearest distance
between the path and the left focal point the same. This distance is a(1−e).
So the limit is

a→∞ and d ≡ a(1− e) = constant (2)

This can only be true if also e → 1. Using b2 = a2(1 − e2), we can rewrite
the curve equation as

x2 − 2aex

a2
+

y2

a2(1− e2)
= 1− e2 , (3)

or
x2 − 2aex

a2
+

y2

ad(1 + e)
= (1− e)(1 + e) , (4)

or
x2 − 2aex

a
+

y2

d(1 + e)
= d(1 + e) , (5)

Now the limit is easy and gives

x =
y2

4d
− d . (6)

2 Equation 7.27

Equation 7.27 on page 175 does not seem immediate1 We start with

a cosψ = ae+ r(θ) cos θ (7)

and fill in the equation for r(θ) to get

a2

b2
(−e+ cosψ)(1 + e cos θ) = cos θ . (8)

1At least not to the lecturer, any student that spots a simpler derivation than mine is
welcomed to send this to me.



We can rearrange that equation into

(1 + e cos θ)(e cosψ − e2) = e
b2

a2
cos θ (9)

After using e2 = 1− b2/a2 we rewrite this as

e cosψ(1 + e cos θ)− e2 − e cos θ = 0 . (10)

Equivalently
e cosψ(1 + e cos θ)− e cos θ − 1 = e2 − 1 , (11)

or

(e cosψ − 1)(1 + e cos θ) = e2 − 1 = − b
2

a2
(12)

which leads to 7.27.

3 Equation 7.28

Equation 7.28 on page 175 does not seem immediate2 Here is a derivation
that does not require equation 7.27 as an intermediate step. Taking a θ
derivative of equation the equation above 7.27 and recalling the definition of
r(θ), I find:

dθ

dψ
=
a2

b2
(1 + e cos(θ))2

sinψ

sin θ
. (13)

2At least not to the lecturer, any student that spots a simpler derivation than mine is
welcomed to send this to me.



Now we rewrite sinψ:

sinψ =
√

1− cos2 ψ

= a−1
√
a2 − a2 cos2 ψ

= a−1

√
a2 − (ae+

b2 cos θ

a(1 + e cos θ)
)2

= a−1

√
a2 − a2e2 − b4 cos2 θ

a2(1 + e cos θ)2
− 2eb2

cos θ

1 + e cos θ

=
b

a

√
1− b2 cos2 θ

a2(1 + e cos θ)2
− 2e

cos θ

1 + e cos θ

=
b

a

√
1− 2e

cos θ

1 + e cos θ
+

e2 cos θ2

(1 + e cos θ)2
− e2 cos θ2

(1 + e cos θ)2
− b2 cos2 θ

a2(1 + e cos θ)2

=
b

a

√
(1− e cos θ

1 + e cos θ
)2 − (e2 − b2

a2
)

cos θ2

(1 + e cos θ)2

=
b

a

√
(

1

1 + e cos θ
)2 − cos θ2

(1 + e cos θ)2

=
b

a

sin θ

(1 + e cos θ)
. (14)

Putting this back into equation (13) reproduces 7.28.

4 What is a cross section?

I present an alternative definition of a cross section to what can be found in
the book. This definition is easier and more insightful.

Definition: Consider an infinitely big beam of incoming particles that are
being shot towards a target. All the particle velocities are in exactly the
same direction (parallel). The cross section σ is a function defined on the
unit 2-sphere surrounding the center of the target3. Consider all particles
that are being scattered in various directions. We denote these directions
collectively by M . So M is a subspace on the 2-sphere: the set of angles of
the outgoing velocities. Then the cross section is defined by the following

3 In other words, σ it is a function of the two Euler angles θ and φ that uniquely fix a
direction.



equation ∫
M

σ(θ, ϕ) sin(θ)dθdφ = A (15)

where A is the cross sectional area of the part of the imcoming beam that
has scattered through M .

Ok, let us explain this in simple words. First note that the conventions
of the Euler angles are chosen such that θ is also the scattering angle. For
example consider a target that repells incoming particles and is axially sym-
metric. That means symmetric in the φ-direction. Then particles colliding
head on are being pushed back where they come from so then θ = π. Parti-
cles that have an impact parameter that is really large are not going to feel
the target and are basically flying straight and then θ = 0. This explains why
the cross section for the Rutherford experiment becomes infinite for θ = 0: if
we integrate σ from θ = 0 to some finite value of θ, say θ = π/2 we must find
the area of the imcoming beam that has scattered in those directions. Clearly
that is an infitely large part, taking into account all particles at infinity. If
you want to picture this: look at the plane perpendicular to the beam. That
area is the whole plane aside from a disk in the center. The boundary of that
disk (a circle) is formed by particles that scatter at an angle π/2.

In general all particles that come from some part of the beam, namely
the part with area A will scatter into various directions that form a segment
M on the 2-sphere.

Let us apply this definition to a ’hard wall’ elastic colision. So we picture
a biljart ball of radius R as the target. See the figure below.

Let us compute the cross section. From the picture we can deduce

θ + 2α = π . (16)

Also from the picture we see the following relation between impact parameter
p and scattering angle θ:

R sin(α) = p→ p(θ) = R cos(θ/2). (17)

Plugging this into the equation for an axial symmetric cross section

σ(θ) = − p

sin(θ)

dp

dθ
(18)

yields:

σ(θ) =
R2

4
. (19)



Figuur 1: Hard wall collision.

Now integrating the cross section over the whole S2 gives:∫ θ=π

θ=0

∫ φ=2π

φ=0

σ(θ) sin(θ)dθdφ = πR2 (20)

exactly as expected! We find the cross section area of the target. Why?
Well, any incoming particle that is not directly aimed into the biljart ball will
simply miss it and not scatter at all. Recall that the cross section computes
the area of the incoming beam that scatters. What does not interact, does
not scatter and is not taken into acoount.

Now that we have gotten a feel for what a cross section is, let us contem-
plate how we actually go about and measure it in an experiment. This then
will touch upon the definition given in the text book. One can show that the
following definition is equivalent:

Definition 2:
Call the flux4 of the incoming beam F . Then

σ(θ, φ) sin(θ)dφdθ =
Ndφdθ

∆tF
, (21)

where N is the number of particles scattered into the window dφdθ. So the
definition says that σ is sort of a probability to measure particles. It is the

4Flux is the number of particles crossing an unit area in a unit of time



probability density describing the number of scattered particles flying off in
the directions θ, φ per unit time (∆t) per unit of flux of the imcoming beam.
I will not explain why these definitions are equivalent, but refer top next
years course on particle physics or the book of Thomson on Particle Physics
(https://www.hep.phy.cam.ac.uk/ thomson/MPP/ModernParticlePhysics.html)

5 Alternative description of Noether’s theo-

rem

The point I wish to make is that Noether’s theorem is identical to the theorem
of a cyclic coordinate, but sometimes seeing the cyclic coordinate requires
going to different coordinates. So consider a configuration space with coor-
dinates qi, but none of these coordinates are cyclic. However there is some
(possibly non-linear) combination that is cyclic. Call it λ. So

λ(q1, . . . , qn) . (22)

Think of rotational symmetries. In Cartesian coordinates the Lagrangian
will depend on x, y, z, but when there is some rotational symmetry around
some axis, I can go to cylindrical coordinates and then the angle variable will
be cyclic! So when I choose new coordinates q̃ as follows

q̃ = (q̃1 = λ, q̃2, . . . , q̃n) (23)

such that the first coordinate in the new system is the cyclic one, and the
others are some unspecified combination of the original q′s that is such that
the q̃ cover the configuration space (locally).

Lagrange’s equations in the new coordinates are

d

dt
(
∂L

∂ ˙̃qi
) =

∂L

∂q̃i
. (24)

But since q̃1 = λ is cyclic we have a conserved quantity Q:

Q =
∂L

∂λ̇
. (25)

Now we will write this quantity in terms of the old coordinates q by using
the chain rule. In general momenta in different coordinates are related as
follows

∂L

∂ ˙̃qj
=
∑
i

∂L

∂q̇i
∂q̇i

∂ ˙̃qj
=
∑
i

∂L

∂q̇i
∂qi

∂q̃j
(26)



where in the last step we relied on

˙̃qj =
∑
i

∂q̃j

∂qi
q̇i . (27)

If we now use this for writing out that the momentum associated to q̃1 = λ
is constant, we find

Q =
∂L

∂λ̇
=
∑
i

∂L

∂q̇i
∂[qi]λ
∂λ

. (28)

which is Noether’s theorem. If we want to describe Q entirely in terms of the
origional coordinates qi we need to evaluate the above equation at λ = 0:

Q =
∂L

∂λ̇
=
∑
i

∂L

∂q̇i
∂[qi]λ
∂λ
|λ=0 . (29)

6 Derivation of Liouville’s theorem

To be typed.

7 Rotations

Consider the n-dimensional plane Rn with Cartesian coordinates x1, . . . xn.
We are interested in linear transformations of points:

x′1
x′2
. . .
x′3

 = R


x1
x2
. . .
x3

 (30)

with R some matrix.

• Argue that all transformations that preserve the distance, d, of the
points to the origin d =

∑
i x

2
i are given by matrices that obey RRT = 1

(and hence RTR = 1), where 1 denotes the unity matrix.

• Explain why these are the definitions of what is called a rotation around
the origin. In other words, a rotation is given by a matrix that obeys
RRT = 1.



• Verify that rotations around the z-axis over an angle θ in R are given
by

Rz =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (31)

• is this a clockwise or anti-clockwise rotation when viewed from “above”(ie
from somehow looking down on the (x, y))-plane.

• Write the rotation matrices for rotations around the x- and y-axis.

Imagine one interested in rotations around the axis n̂, which does not
coincide with one of the standard axises x̂, ŷ, ẑ. A trick can be this: first one
chooses new coordinates such that n̂ becomes ẑ. Then one writes the rotation
matrix for a rotation around the z-axis. Then one writes the obtained result
in the old coordinates. Let us make this more concrete: Say for instance that
the relation between the new x̃, ỹ, z̃ and old coordinates (x, y, z) is given by
a matrix S: x̃ỹ

z̃

 = S

xy
z

 . (32)

The tilded coordinates are such that now the axis n̂ coincided with ˆ̃z.

• Now show that R = SRzS
−1 with Rz given in (31).

• Does this generalise to arbitrary dimensions?

• Now perform this in a concrete example. Say we rotation around the
axis defined by the point (1, 2, 0) and the origin (0, 0, 0).

• Verify that your matrix satisfies RRT = 1.

8 Theory of small oscillations

The equations of motion for the approximated system are

T~̈q = −V~q (33)

where the objects T and V are the square symmetric matrices appearing in
the definition of kinetic and potential energy T = tij and V = vij.

Now our aim is to find a new basis of coordinates such that equations (33)
turn into a set of decoupled harmonic oscillators. This would be achieved if

T = 1 , V = diag(ω2
1, ω

2
2, . . . , ω

2
N) , (34)



where 1 denotes the unity matrix.
Can we find such a basis of new coordinates?
In what follows we construct this coordinate transformation. We will

restrict to linear coordinate transformations of the form:

~q′ = S~q , (35)

with S some invertible matrix. How do T and V transform? We will make
use of the fact that energies are unaffected by coordinate transformations
(a particle will not suddenly have different kinetic or potential energy if I
change spatial coordinates). Let us denote the transformed matrices with a
prime. So we have for instance

~q′
T
V′~q′ = ~qTV~q , (36)

or, equivalently
~qTSTV′S~q = ~qTV~q . (37)

Since this is true for all ~q this must mean that

STV′S = V↔ V′ = S−TVS−1 . (38)

Analogously we have
T′ = S−TTS−1 . (39)

Finally, the student needs to know the following theorem in linear algebra.
Take M a square matrix. Then there exists an ortogonal transformation P
such that

PMP−1 = D (40)

with D a diagonal matrix. The fact that P is orthogonal means P T = P−1.
So the above can be rewritten as

PMP T = D (41)

Secondly if M is a positive definite matrix then all eigenvalues (elements of
D) are positive.

Now let us apply this for the matrix T. Then we know we can diagonalise
it. So there exists an S1 such that

~q′ = S1~q → T′ = D , D = diag(d21, d
2
2, . . .) (42)

Now also V changed to V′. But the new V′ will still be symmetric and
positive (explain why!).



Now consider yet another transformation:

~q′′ = S2~q
′ = S2S1~q (43)

where
S2 =

√
D . (44)

Then
T′′ = 1 , (45)

and still V′′ is positive and symmetric (explain why!).
Finally we consider a third transformation:

~q′′ = S3~q
′′ = S3S2~q

′ = S3S2S1~q (46)

such that it diagonalises V′′′

V′′′ = diag(ω2
1, ω

2
2, . . .) (47)

In this new basis the kinetic energy is still the same:

T′′′ = S−T3 T′′S−13 = S−T3 S−13 = 1 , (48)

since S3 (and hence S−13 ) is an ortogonal transformation.
We achieved our goal.
The solutions to this set of decoupled harmonic oscillators can be written

as
~q′′′(t) =

∑
i

ci~a
′′′
i cos(ωit+ γi) (49)

where the ~a′′′i are the following vectors

~a′′′i =



0
...
0
1
0
...
0


(50)

with the 1 on position i.
Now let us see what this implies in the original coordinates. The old

coordinates and the new coordinates are related as follows

~q = (S3S2S1)
−1~q′′′ (51)



so we can write
~q(t) =

∑
i

ci~ai cos(ωit+ γi) (52)

where ~a = (S3S2S1)
−1~a′′′. Let us see what kind of relations the ~ai obey. Ei-

ther by putting the above equation back into the original equation of motion,
or by realising algebraicely what we did, one can see that the ~ai are solutions
to (

−ω2
iT + V

)
~ai = 0 . (53)

The normalisation of the ~ai do not matter too much since they can be ab-
sorbed in the coefficients ci. But in case one cares, it goes as follows. The
~a′′′i clearly obeyed:

~a′′′Ti ~a′′′j = δij . (54)

This gives

~aTi (S3S2S1)
TS3S2S1~aj = δij → ~aTi S

T
1 S

T
2 S

T
3 S3S2S1~aj = δij (55)

using that S3 is orthogonal and that S2 =
√
D we find:

~aTi S
T
1 DS1~aj = δij (56)

Finally using the very definition of S1 we find:

~aTi T~aj = δij . (57)

So what does one do in practice? One does not seek to do coordinate
transformations. Instead one follows 3 steps:

1. Compute the frequencies ωi by solving the determinant (det (−ω2
iT + V) =

0).

2. Then we find ~ai, (−ω2
iT + V)~ai = 0.

3. Then the general solution is given by (52).

A Bilinear forms

Consider kinetic energy

T = 1
2

∑
ij

aij q̇
iq̇j . (58)

Let’s work in the context of chapter 15, where in the linearised approximation
aij is not dependent on q, although it typically is. This is just to simplify



things (otherwise I need to discuss tensor fields instead of just tensors). The
object aij can be written as a square matrix. In algebra you have seen square
matrices as a method to write down a linear map. A linear map M maps
vectors to other vectors in a linear way. Of typical interest is what happens
to a matrix when I change basis of my vector space. Say I change basis using
a transformation S. This means that my new vectors, denoted with a prime
are written as

v′ = Sv , (59)

for all v. This just means that in the new basis the components of the same
vector are now given by a different expression (obtained by multiplying with
a matrix S). So how does the matrix M change? Well that is easy. We just
use the definition of M . It maps vectors to other vectors. So we have that
for two vectors w, v, where

w = Mv , (60)

we must have
w′ = M ′v′ . (61)

This allows us to find M ′, because we can rewrite the above equation as

Sw = M ′Sv → w = S−1M ′Sv = Mv . (62)

Hence we find
S−1M ′S = M → M ′ = SMS−1 . (63)

This you must have seen in a course on linear algebra.
Instead of linear maps there also exist things called bilinear forms and

they can also be represented by square matrices. The object aij in the kinetic
energy turns out to be such a thing. What is a bilinear form? It is defined
as an object a that acts linearly on two vectors and maps it to a number.
That is:

a(v, w) ∈ R (64)

where a acts linear in both its arguments. For example:

a(2v1 + 3v2, w1 + 4w2) = 2a(v1, w1 + 4w2) + 3a(v2, w1 + 4w2) (65)

= 2a(v1, w1) + 8a(v1, w2) + 3a(v2, w1) + 12a(v2, w2) .

Similar to the linear map M , we can ask how a matrix associated to a
bilinear form changes when the basis of the vector space is changed. Again
we just use the definition of a bilinear form:

a′(v′, w′) = a(v, w) . (66)



The reason we can write the above equation is that the image of a bilinear
form is a number, something that is unaffected by a change of basis. Rewri-
ting the above equation in components means:∑

ij

a′ijv
′
i, w

′
j =

∑
kl

aklvk, wl . (67)

Or in matrix language:
v′Ta′w′ = vTaw . (68)

Now we use the transformation properties of the vectors (v′ = Sv, w′ = Sw):

vTSTa′Sw = vTaw . (69)

Since w and v are arbitrary we have

STa′S = a → a′ = S−TaS−1 . (70)

This is clearly different from a transformation of a linear map, although both
linear maps and bilinear forms are described by square matrices. A matrix by
itself does not tell you whether you are looking at a linear map or a bilinear
form. It is crucial to know this.

Now consider special kind of transformations, called ortogonal transfor-
mations. Then SST = 1 or, equivalently, S−1 = ST . Then linear maps and
bilinear forms transform identically! This can be inferred from (63) and (70).

Now consider special bilinear forms. Namely those that are symmetrical:

a = aT (71)

Note that this property is not changed by going to a different basis (check
this). You have learned in a course on linear algebra that a symmetric ma-
trix associated to a linear map (!) can be diagonalised using an orthogonal
transformation. So there exists a matrix O, that obeys OOT , such that

M ′ = D = OMO−1 , (72)

with D diagonal. Since we just explained that, under orthogonal transforma-
tions bilinear forms and linear maps have identical transformation properties
we can also show that any symmetric bilinear form can be diagonalised using
an orthogonal transformation!

a′ = D , (73)

with D diagonal. Now with bilinear maps we can even simplify the ma-
trix expression more. So we assume we brought a′ into the above diagonal



form. Call the non-zero diagonal elements di. Then define a further, non-
orthogonal, transformation S as follows

S = diag(s1, . . . , sn) , (74)

where the si are chosen as follows:

• When di > 0, we take si =
√
di.

• When di < 0, we take si = −
√
di.

• When di = 0, we take si = 1.

Call a′′ the transformation of a′. Then one can easily show that (check this!)
that

a′′ = diag(εi) , (75)

where εi is either 0, 1 or −1. This is called Sylvesters theorem. If a is positive
definite then a′′ has only εi = 1 such that a′′ = 1 (the unity matrix).

The matrix a used in the formula for the kinetic energy is an example
of a bilinear form. The reason is that the value of the kinetic energy is
independent of the basis used to describe the qi. In other words:

T ′ = 1
2

∑
ij

a′ij q̇
′iq̇′j = 1

2

∑
ij

aij q̇
iq̇j = T . (76)

It is also positive definite since T has to be positive, for all choices of veloci-
ties.

So, in the context of chapter 15, we reason like this: once a basis of
q’s is found such that a′ = 1 (unity matrix), we can still use orthogonal
transformations to simplify the matrix of the bilinear form V. The reason is
that under an orthognal transformation the unity matrix is mapped to itself,
since, if a = 1 then a′ = OaOT = OOT = 1. Since V is a positive definite
bilinear form (explain!) we can then use orthogonal transformations to bring
V to a diagonal matrix with positive entries.
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