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1.5. Heat Equation of the Form 88—1: = a(%—i‘g + %%—1:) + ®(r, t)

Nonhomogeneous heat (diffusion) equation with axial symmetry.
1.5-1. Solutions of boundary value problems in terms of the Green'’s function.

We consider boundary value problems for the nonhomogeneous heat equation with axial symmetry

in domain0 < r < R with the general initial condition
w=f(r) at t=0

and various homogeneous boundary conditions (the solutions bounded @tre sought). The
solution can be represented in terms of the Green’s function as
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1.5-2. Domain: 0< r < R. First boundary value problem for the heat equation.
A boundary condition is prescribed:
w=0 at r=R.

Green'’s function:

= 2 r & ap’t
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(7"5) ZRsz(un)OMR OﬂR p R2
n=1
where theu,, are positive zeros of the Bessel functiofg(i:) = 0. Below are the numerical values
of the first ten roots:

pi1 = 24048, i, =55201, i3 =8.6537, s =11.7915, ps = 14.9309,
g = 18.0711, 7 =21.2116, pg = 24.3525, g = 27.4935, ji30 = 30.6346.

The zeroes of the Bessel functidp(i:) may be approximated by the formula
fn = 2.4+3.13(n - 1) n=123..),

which is accurate within 0.3%. As — oo, we haveu,+1 — pu, — .

1.5-3. Domain: 0< r < R. Second boundary value problem for the heat equation.
A boundary condition is prescribed:
ow

EZO at r=R.

Green'’s function:
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where theu,, are positive zeros of the first-order Bessel functifif;:) = 0. Below are the numerical
values of the first ten roots:
uy =3.8317, pup=7.0156, puz=10.1735 pu4=13.3237, us=16.4706,
g =19.6159, 7 =22.7601, pg=25.9037, ug=29.0468, 0= 32.1897.

Asn — oo, we haveu,+1 — pun, — .
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