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1.5. Heat Equation of the Form ∂w
∂t

= a
(

∂2w
∂r2 + 1

r
∂w
∂r

)
+ Φ(r, t)

Nonhomogeneous heat (diffusion) equation with axial symmetry.

1.5-1. Solutions of boundary value problems in terms of the Green’s function.

We consider boundary value problems for the nonhomogeneous heat equation with axial symmetry
in domain0 ≤ r ≤ R with the general initial condition

w = f (r) at t = 0

and various homogeneous boundary conditions (the solutions bounded atr = 0 are sought). The
solution can be represented in terms of the Green’s function as

w(x, t) =
∫ R

0
f (ξ)G(r, ξ, t) dξ +

∫ t

0

∫ R

0
Φ(ξ, τ )G(r, ξ, t − τ ) dξ dτ .

1.5-2. Domain: 0≤ r ≤ R. First boundary value problem for the heat equation.

A boundary condition is prescribed:

w = 0 at r = R.

Green’s function:

G(r, ξ, t) =
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where theµn are positive zeros of the Bessel function,J0(µ) = 0. Below are the numerical values
of the first ten roots:

µ1 = 2.4048, µ2 = 5.5201, µ3 = 8.6537, µ4 = 11.7915, µ5 = 14.9309,

µ6 = 18.0711, µ7 = 21.2116, µ8 = 24.3525, µ9 = 27.4935, µ10 = 30.6346.

The zeroes of the Bessel functionJ0(µ) may be approximated by the formula

µn = 2.4 + 3.13(n − 1) (n = 1, 2, 3, . . .),

which is accurate within 0.3%. Asn →∞, we haveµn+1 − µn → π.

1.5-3. Domain: 0≤ r ≤ R. Second boundary value problem for the heat equation.

A boundary condition is prescribed:

∂w

∂r
= 0 at r = R.

Green’s function:

G(r, ξ, t) =
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where theµn are positive zeros of the first-order Bessel function,J1(µ) = 0. Below are the numerical
values of the first ten roots:

µ1 = 3.8317, µ2 = 7.0156, µ3 = 10.1735, µ4 = 13.3237, µ5 = 16.4706,

µ6 = 19.6159, µ7 = 22.7601, µ8 = 25.9037, µ9 = 29.0468, µ10 = 32.1897.

As n →∞, we haveµn+1 − µn → π.
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