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The force on wire 4 due to the magnetic fields will be:

Note:  One can also write the square of the
magnitude of the r vector as a dot product, 
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Note: The initial negative sign accounts for

the fact that our radii are leading from the

destination back to the sources of the fields

rather than vice-versa.

The net magnetic field from the other wires at the origin is then:
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Place wire 4 at the origin.  The vectors from the origin to each of the other wires are then:
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Describe each current as a vector.  "Out of the page" means +z direction:

µN N 10
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The Cross Product

Suppose we have vectors i and r.  The cross product i x r can be computed as a determinant:
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