is reversible. The evolutions of the two profiles, $C_{0}(r, \phi, z, t)$ and $C_{R}(r, \phi, z, t)$ are described by the continuity eqs 18 and 19.

$$
\begin{align*}
& \partial C_{0}(r, \phi, z, t) / \partial t=-\nabla \cdot J_{0} \tag{18}\\
& \partial C_{R}(r, \phi, z, t) / \partial t=-\nabla \cdot \boldsymbol{J}_{R} \tag{19}
\end{align*}
$$

While the flux of diamagnetic 0 is given everywhere by eq 16 , the flux expression for paramagnetic R in the magnetic field is derived as follows.

The flux of any species j is given by eq $20,{ }^{18 b}$ where $\overline{\bar{\mu}}_{j}$ is the

$$
\begin{equation*}
\mathbf{J}_{\mathrm{j}}=-\left(\mathrm{C}_{\mathrm{j}} \mathrm{D}_{\mathrm{j}} / \mathrm{N}_{\mathrm{A}} \mathrm{kT}\right) \nabla \overline{\bar{\mu}}_{\mathrm{j}}+\mathrm{C}_{\mathrm{j}} \mathbf{v} \tag{20}
\end{equation*}
$$

magnetoelectrochemical potential of j , which, in analogy to the familiar electrochemical potential, contains the magnetic contribution in the ability of j to produce work. To express $\overline{\bar{\mu}}_{\mathrm{j}}$ in terms of knowable quantities, we need to consider the contribution of the magnetostatic energy, U_{M}, to the total internal energy of the electrolytic solution, $U_{T} .{ }^{19}$

The infinitesimal change in the total internal energy of a phase, $d \overline{\bar{U}}_{\mathrm{T}}$, due to an infinitesimal change in the content of the phase in component j has the following: (a) the usual $\mathrm{P}-\mathrm{V}-\mathrm{T}-\mathrm{n}$ contributions of an electrically neutral, nonmagnetic phase, dU; (b) contributions due to changes in the charge of the phase, dU_{Q}; and (c) contributions due to changes in the magnetization of the phase, dU_{M}. In other words,

$$
\begin{equation*}
d \overline{\bar{U}}_{T}=d U+d U_{Q}+d U_{M} \tag{21}
\end{equation*}
$$

Now, dU is given by eq 22,

$$
\begin{equation*}
\mathrm{dU}=\mathrm{T} \mathrm{dS}-\mathrm{PdV}+\sum_{\mathrm{j}=1}^{\mathrm{j}_{\max }} \mu_{\mathrm{j}} \mathrm{dn}_{\mathrm{j}} \tag{22}
\end{equation*}
$$

where dS is the entropy change, μ_{j} is the chemical potential of species $\mathrm{j}^{\left(\mathrm{j}_{\text {max }}\right.}$ is the total number of species in the phase), and dn_{j} is the change in the amount of j in moles.

On the other hand, $\mathrm{dU}_{\mathrm{Q}}=\phi \mathrm{dQ}$, where ϕ is the phase potential and $d Q$ the change in the total charge of the phase. Q is given by eq 23 , where z_{j} is the ionic charge of every species j.

$$
\begin{equation*}
\mathrm{Q}=\mathrm{F} \sum_{\mathrm{j}=1}^{\mathrm{j}_{\max }} \mathrm{z}_{\mathrm{j}} \mathrm{n}_{\mathrm{j}} \tag{23}
\end{equation*}
$$

Therefore, dU_{Q} is given by eq 24 .

$$
\begin{equation*}
\mathrm{dU}_{\mathrm{Q}}=\mathrm{F} \phi \sum_{\mathrm{j}=1}^{\mathrm{j}_{\max }} \mathrm{z}_{\mathrm{j}} \mathrm{dn}_{\mathrm{j}} \tag{24}
\end{equation*}
$$

Similarly, taking into consideration eqs 7 and $9, \mathrm{dU}_{\mathrm{M}}$ for the entire phase is given by eq 25 :
(19) Haase, R. Thermodynamics of Irreversible Processes; Dover Publications: NewYork, 1990; p 64.

$$
\begin{equation*}
\mathrm{dU}_{\mathrm{M}}=-\mathrm{N}_{\mathrm{A}} \sum_{\mathrm{j}=1}^{\mathrm{j}_{\max }}\left(\mathrm{m}^{*} /|\mathbf{B}|\right)\left[\tanh \left(\mathrm{m}^{*}|\mathbf{B}| / \mathrm{kT}\right)\right] \mathbf{B} \cdot \mathbf{B} \mathrm{dn}_{\mathrm{j}} \tag{25}
\end{equation*}
$$

Overall, taking into consideration eqs 22,24 , and 25 , eq 21 is transformed into eq 26.

$$
\begin{align*}
& \mathrm{d} \overline{\bar{U}}_{\mathrm{T}}=\mathrm{T} d S- \mathrm{PdV}+\sum_{\mathrm{j}=1}^{\mathrm{j}_{\text {max }}}\left[\mu_{\mathrm{j}}+\mathrm{F} \phi \mathrm{z}_{\mathrm{j}}-\right. \\
&\left.\mathrm{N}_{\mathrm{A}}\left(\mathrm{~m}^{*} /|\mathbf{B}|\right)\left[\tanh \left(\mathrm{m}^{*}|\mathbf{B}| / \mathrm{kT}\right)\right] \mathbf{B} \cdot \mathbf{B}\right] \mathrm{dn} \tag{26}\\
& j
\end{align*}
$$

Equation 26 is of the form,

$$
\begin{equation*}
\mathrm{d} \overline{\bar{U}}_{\mathrm{T}}=\mathrm{T} \mathrm{dS}-\mathrm{PdV}+\sum_{\mathrm{j}=1}^{\mathrm{j}_{\max }} \overline{\bar{\mu}}_{\mathrm{j}} \mathrm{dn}_{\mathrm{j}} \tag{27}
\end{equation*}
$$

where the magnetoelectrochemical potential, $\overline{\bar{\mu}}_{\mathrm{j}}$, of a species j with spin $1 / 2$ in a given phase is defined now via eqs 26 and 27 by

$$
\begin{equation*}
\overline{\bar{\mu}}_{\mathrm{j}}=\mu_{\mathrm{j}}+\mathrm{F} \phi \mathrm{z}_{\mathrm{j}}-\mathrm{N}_{\mathrm{A}}\left(\mathrm{~m}^{*} /|\mathbf{B}|\right)\left[\tanh \left(\mathrm{m}^{*}|\mathbf{B}| / \mathrm{kT}\right)\right] \mathbf{B} \cdot \mathbf{B} \tag{28}
\end{equation*}
$$

Equation 28 is quite general, but again for magnetization conditions far from saturation $\tanh \left(\mathrm{m}^{*}|\mathbf{B}| / \mathrm{kT}\right) \approx \mathrm{m}^{*}|\mathbf{B}| / \mathrm{kT}$, and eq 28 becomes

$$
\begin{equation*}
\overline{\bar{\mu}}_{\mathrm{j}}=\mu_{\mathrm{j}}+\mathrm{F} \phi \mathrm{z}_{\mathrm{j}}-\mathrm{N}_{\mathrm{A}}\left[\left(\mathrm{~m}^{*}\right)^{2} / \mathrm{kT}\right] \mathbf{B} \cdot \mathbf{B} \tag{29}
\end{equation*}
$$

Finally, since $\mu_{j}=\mu_{j}{ }^{0}+N_{A} k T \ln C_{j}$ (where $\mu_{j}{ }^{0}$ is the standard chemical potential of j in the phase), ${ }^{18 b}$ by introducing eq 29 into eq 20 we obtain eq 30 as the expression for the flux of a paramagnetic species j in a magnetic field gradient typical of electrochemical experimental conditions.

$$
\begin{align*}
J_{j}=-D_{j} \nabla C_{j}-\left(z_{j} C_{j} D_{j} F /\right. & \left.N_{A} k T\right) \nabla \phi+ \\
& 2 C_{j} D_{j}\left(m^{*} / k T\right)^{2} \mathbf{B} \cdot \nabla \mathbf{B}+C_{j} \mathbf{v} \tag{30}
\end{align*}
$$

Equation 30 indicates that even in the absence of convection (as for example in the stagnant layer close to an electrode) the field gradient causes a drift of paramagnetic species toward areas of higher field. In this regard, eq 30 is very relevant to recent reports on magnetic focusing at magnetic electrodes ${ }^{2 g, h}$ and on magnetophoresis of tagged polymers, ${ }^{20}$ or paramagnetic ions. ${ }^{21}$ This magnetophoretic mode of transport resembles concentration gradient-driven diffusion or electric field gradient-driven migration. ${ }^{22}$
3. Voltammetry in the Magnetic Field of Permanent Magnets. Figure 2 shows voltammograms as a function of the

[^0]
[^0]: (20) Barkema, G. T.; Schutz, G. M. Europhys. Lett. 1996, 35, 139.
 (21) Fujiwara, M.; Kodoi, D.; Duan, W.; Tanimoto, Y. J. Phys. Chem. B 2001, $105,3343$.
 (22) It is noted that magnetophoretic drift of ion radicals (i.e., of charged paramagnetic species) would create a charge separation, which is expected to establish an electric potential opposing further magnetic field-induced drift. That potential difference, $\Delta \phi$, between two points at different $|\mathbf{B}|$'s, can be calculated from the magnetoelectrochemical potential (eq 29) and is given by $\Delta \phi=\left[\mathrm{N}_{\mathrm{A}}\left(\mathrm{m}^{*}\right)^{2} / \mathrm{z}_{\mathrm{j}} \mathrm{FkT}\right] \Delta\left(|\mathbf{B}|^{2}\right)$.

