1

US )+ (VB/2)(S B =1, XE;)—=(3/2)(S,E,)=1
(75
1

KZ3) = (V3/2)(3,Ez)=1, B3+ (vV3/2)(31E))=

From the solution of these equations we find that (E) is 3. .

Therefore

N .
(PE)=20 =100 - 9

There is a 7.5% probability that d and e are both 1.

IEinstein’s letter to Born, 4 December 1926, in The Born—Einstein Letters,
translated by Irene Born (Walker, New York, 1971).

2N. Bohr, “Discussion with Einstein on epistemological problems in atomic
physics,” in Albert Einstein: Philosopher—Scientist, edited by P. A.
Schilpp (The Library of Living Philosophers, Evanston, Illinois, 1949), p.
199.

3A. Einstein, B. Podolsky, and N. Rosen, “Can quantum mechanical de-
scription of physical reality be considered complete?”” Phys. Rev. 47, 777—
780 (1935).

“Einstein’s letter to Born, 3 March 1947, in The Born—Einstein Letters, Ref.
1.

"% 5D, Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, 1951), pp.
614-623.

%), S. Bell, “On the Einstein—Podolsky~Rosen paradox,” Physics 1, 195—
200 (1964), reprinted in J. S. Bell, Speakable and Unspeakable in Quan-
tum Mechanics (Cambridge University, Cambridge, 1987); J. F. Clauser
and A. Shimony, “Bell’s theorem: Experimental tests and implications,”
Rep. Prog. Phys. 41, 1881-1927 (1978).

’S. J. Freedman and J. S. Clauser, “Experimental test of local hidden-
variable theories,” Phys. Rev. Leit. 28, 938—941 (1972); M. Lamehi-

- Rachti and W. Mittig, “Quantum mechanics and hidden variables: A test of
Bell’s inequality by the measurement of the spin correlation in low-energy
proton—proton scattering,” Phys. Rev. D 14, 2543-2555 (1976); the early
experiments dre reviewed by J. F. Clauser and A. Shimony, Ref. 6; A.
Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein—
Podolsky—Rosen—Bohm Gedankenexperiment: A new violation of Bell’s
inequalities,” Phys. Rev. Lett. 49, 91-94 (1982); A. Aspect, J. Dalibard,

Quantum mysteries refined
N. David Mermin

and G. Roger, “Experimental tests of Bell’s inequalities using time-
varying analyzers,” ibid.- 49, 1804—1807 (1982); W. Perrie, A. J. Duncan,
H. 1. Beyer, and H. Kleinpoppen, “Polarization correlation of the two
photons emitted by metastable atomic deuterium: A test of Bell’s inequal-
ity,” ibid. 54, 1790~1793 (1985); Z. Y. Ou and L. Mandel, “Violation of
Bell’s inequality and classical probability in a two-photon correlation ex-
periment,” ibid. 61, 50-53 (1988); T. E. Kiess, Y. H. Shih, A. V. Ser-
gienko, and C. O. Alley, “Einstein—Podolsky—Rosen—Bohm experiment
using pairs of light quanta produced by type-II parametnc down-
conversion,” ibid. 71, 38933897 (1993).

8D. M. Greenberger, M. Horne, and A. Zeilinger, “Going beyond Bell’s
theorem,” in Bell’s Theorem, Quantum Theory, and Conceptions of the
Universe, edited by M. Kafatos (Kluwer Academic, Dordrecht, 1989), pp.

69-72; D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, .

“Bell’s theorem without inequalities,” Am. J. Phys, 58, 1131-1143
(1990).

%P. Heywood and M. L. G. Redhead, “Nonlocality and the Kochen—
Specker paradox,” Found. Phys. 13, 481-499 (1983); H. R. Brown and G.
Svetlichny, “Nonlocality and Gleason’s lemma. Part I. Deterministic theo-
ries,” ibid. 20, 1379-1387 (1990); L. Hardy, “Quantum mechanics, local
realistic theories, and Lorentz-invariant realistic theories,” Phys. Rev. Lett.
68, 29812984 (1992); ““A quantum optical experiment to test local real-
ism,” Phys. Lett. A 167, 17~23 (1992); B. Yurke and D. Stoler, “Using the
Pauli exclusion principle to exhibit local-realism violations in overlapping
interferometers,” Phys. Rev. A 47, 1704-1707 (1993); R. Clifton and P.
Niemann, “Locality, Lorentz invariance, and linear algebra: Hardy’s theo-

.rem for two entangled spin-s particles,” Phys. Lett. A. 166, 177-184
(1992).

19, Hardy, “Nonlocality. for two partlcles without inequalities for almost all
entangled states,” Phys. Rev. Lett. 71, 1665-1668 (1993).

“UIN. D. Mermin, “Bringing home the atomic world: Quantum mysteries for

anybody,” Am. J. Phys. 49, 940-943 (1981).

12N, D. Mermin, “Quantum mysteries revisited,” Am. J. Phys. 58, 731-734
(1990); “What’s wrong with these elements of reality?”” Phys. Today 43
(6), 911 (1990).

3T, F. Jordan, Quantum Mechanics in Simple Matrix Form (Wiley, New
York, 1986).

14T, F. Jordan, “Testing Einstein—Podolsky—Rosen assumptions without in-
equalities with two photons or particles with spin 1/2,” Phys. Rev. A
(submitted).

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501

(Received 8 Apfil 1994; accepted 31 May 1994)

A gedanken experiment discovered by Lucien Hardy is translated into a very direct black-box
gedanken demonstration of quantum nonlocality with red and green lights, using only two far apart
detectors each of which operates in only two modes. The quantum mechanical underpinnings of the
gedanken demonstration are quite simple. (This paper provides a text for the Klopsteg Memorial
Lecture to the American Association of Physics Teachers at Notre Dame University, August 11,

1994.)

Some time ago I described in these pages a nontechnical
gedanken demonstration of Bell’s theorem using two far
apart black boxes, each with a switch that could be set in one
of three positions.! The boxes acted as detectors for a pair of
particles emanating from a distant source. Each box re-
sponded to its particle by flashing a red or green light in a
manner that a little analysis revealed to be entirely mysteri-
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ous in view of the absence of connections between the boxes
or between the boxes and the source. More recently I de-
scribed a modification of the gedanken demonstration that
worked on the same nontechnical level, embodying a varia-
tion on the Greenberger~Horne~Zeilinger (GHZ) version of
Bell’s theorem to make the point more directly and
dramatically.> The new gedanken demonstration used three
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(one more) far-apart black boxes with red and green lights,
each of which had only two (one less) switch settings.

Now Lucien Hardy® has discovered a form of Bell’s theo-
rem that leads to a gedanken demonstration that works with
a more economical apparatus than either of these, and is even
easier to describe and analyze. Only wo boxes with red and
green lights are required (as in the first gedanken demonstra-
tion), each box has only two switch settings (as in the sec-
ond), and the mysterious character of the data is virtually
self-evident.

Hardy and subsequently Henry Stapp, Sheldon
Goldstein,” and Thomas Jordan® have stated this new argu-
ment so lucidly that its conversion into the boxes of my
gedanken demonstration is quite stralghtforward as Jordan
has explicitly noted. I carry out the exercise here’ because
the rhetoric that accompanies the Hardy version of the
gedanken demonstration—the song and dance that leads you
irresistibly down the garden path to the wrong
conclusion—is interestingly and instructively different from
the patter common to the Bell or GHZ versions. This is be-
cause the Einstein—Podolsky—Rosen (EPR) argument, in' the
form which plays so central a role in the Bell or GHZ ver-
sions of my device, cannot be made in the Hardy version. I
believe it is the absence of a full blown EPR argument that
explains why nobody had noticed so beautiful a simplifica-
tion in the three decades since Bell’s theorem first appeared.

The entire gedanken demonstration, with the complete and
surprising analysis of the gedanken data, is contained in my
tiny Sec. I. Section II, only slightly longer, gives the full
quantum mechanical derivation of the gedanken data, at a
level suitable for the early part of an (appropriately designed)
introductory course. Section III expands on how the Hardy
gedanken demonstration, in contrast to the earlier ones, nei-
ther implies nor requires the existence of EPR “elements of
reality.” And Sec. IV casts doubt on the claim that a real
Hardy experiment would provide a better test of quantum
nonlocality than existing experiments based on generaliza-
tions of Bell’s original correlation inequality. Appendix A
gives a numerically simple example of a Hardy state and
uses it to make an important point about the “spookiness” of
the nonlocality Hardy states exhibit. Appendix B gives a
more elaborate discussion of the Bell inequality used in Sec
Iv.

It is not necessary to be acquainted with Refs. 1 and 2 to
follow the exposition of the Hardy gedanken demonstratlon
and its quantum mechanical explanation in Secs. I and 1t
Sections III and IV address slightly more technical issues,
but they can also be read without a knowledge of Refs. 1 and
2, though one of my purposes in Sec. III is to contrast the
Hardy demonstration with the Bell and GHZ versions. Sec-
tion IV does not refer to the earlier demonstrations.

1. TWO BLACK BOXES WITH TWO SWITCHES

As promised, my new device (shown in Fig. 1) has only
two detectors (instead of the three in the GHZ device of Ref.
2) and each operates in only two modes (instead of the three
in the Bell device of Ref. 1). Just as in the earlier gedanken
demonstrations, there are no connections between the detec-
tors, which are far apart and far from the source. There are
also no connections between source and detectors beyond
those mediated by a pair of particles that originate at the
source and fly apart to the detectors, the arrival at each de-
tector being signaled by a flash of red or green.
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Fig. 1. The Hardy gedanken demonstration. Two particles emerge from a
common source heading for two far apart detectors, each of which can
operate in two modes, specified by the setting of a switch, When a particle
reaches a detector the detector flashes a red or green light. Aside from the
passage of the particles from the source to the detectors, there are no con-
nections between the source and the detector or between the detectors.

In each run of the gedanken demonstration one presses a
button at the source to send the particles off to the detectors.
After the particles have left the source but before they have

arrived at and triggered the detectors, one randomly and in--

dependently sets the switch on each detector to either of its
two positions (labeled 1 and 2) by tossing a coin at each
detector. One then waits for the lights to flash and records the
color flashed at each detector. As with the earlier Bell device,

one summarizes the result of a run by writing down the set-

tings determined by the tosses of the coins, followed by two

letters indicating the colors subsequently flashed. Thus

21GR describes a run in which the switch on the left detec-
tor was set to 2, the switch on the right detector was set to 1,
the left detector flashed green, and the right detector flashed
red.

The data exhibit the following important features:

(a) In runs in which the detectors end up with different
- settings, they never both flash green: 21GG and

12G G never occur. )

(b) In runs in which both detectors end up set to 2, one
occasionally’ finds both flashing green: 22GG some-
times occurs.

(c) In runs in which both detectors end up set to 1, they
never both flash red: 11RR never occurs.

As in earlier versions of the device, because there are no
direct connections between detectors the explanation for
their coordinated behavior can only come from the fact that
both are triggered by particles coming from a single-source.
Something in the common origin of the particles must be
responsible for the correlations. Since the switches on the
detectors are not set until after the particles have left their
source, whatever features of the particles produce these cor-
relations and however they might vary from one run to the
next, in any particular run those features cannot be affected
by the setting of the switches. Furthermore, since each de-
tector is triggered by only one of the two particles, whatever
features it responds to can reside only in that particle and not
in the particle that went off to the other faraway detector. In
view of this it is very hard to resist the following line of
thought, which constitutes the simplest version of Bell’s
theorem I can imagine:

‘Since any run might end up as a 12 or a 21 run, whenever
one of the particles is of a variety that allows a type 2 detec-
tor to flash green, the other particle must be of a variety that
requires a type 1 detector to flash red, for otherwise we
would see instances of 12GG or 21G G, which never occur.
It follows that in any of those occasional 22 runs in which
both detectors flash green, both particles must be of a variety
that requires a type 1 detector to flash red. So if the random
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setting of the detectors that resulted in any such 22 run had
instead resulted in-a 11 run, both detectors would have
flashed red. But this is 1mpos31ble smce 11RR is never ob-
served.

Thus the regularities described in (a)—(c) are inconsistent
with a very common-sense—indeed, an apparently
unavoidable—explanation for them, leaving those correla-
tions profoundly mysterious.

II. THE QUANTUM MECHANICS BEHIND THE
DEVICE

So how does this magic trick work? You can pick any two
one-particle observables you like for the detectors to measure
when their switches are set to 1.1 Divide the spectrum of
each observable into any two sets you desire and rig the
detectors so that a flash of red or green indicates which set
the measured value was found in. The source produces a pair
of particles in a two-particle state [¥) constructed as follows.

Pick for the left particle any two states that are superposi-
tions of eigenstates of the observable measured in mode 1 on
the left, taken entirely from the red and entirely from the
green part of its spectrum. Call the states |1R); and [1G),.
Pick two states |1R), and |1G), for the particle on the rlght
similarly defined in terms of its own mode-1 observable.!

Take the two particle state |¥) to be a superposition of the

three two-particle states:
11R,1G)=|1R)|1G),;
11G,1R)=|1G)|1R),; (1)
11G,1G)=[1G)|1G),.
Feature (c) of the data is guaranteed by the absence of
|1R,1R) from the superposition:
|¥)=a|1R,1G)+ B|1G,1R)+ 9|1G,1G). 2

The choices of the two observables measured by the de-
tectors in modes 2 are almost as flexible. All we require is
that the observable measured on the left have an eigenstate
|2G); with nonzero components along both |1G); and | 1R);.
A green flash on the left indicates that the measurement in
mode 2 did indeed find the particle in the state [2G),. Any-
thing else results in a red flash. A similar arrangement is
made on the right with a state |2G), .
| Feature (a) requires |¥) to be orthogonal to |1G,2G) and
2G,1G

0=<1G,2GIW>=/3<2GI1R>,+ %2G|1G),, 3)
and
0=(2G,1G|‘-If)=a(20|1R),+'y(ZGllG),.v 4)

Feature (b), apparently incompatible with features (a) and
(c), merely requires [¥) not to be orthogonal to [2G,2G):

0#p=|(2G,2G|V)|?>= | (2G|1R)(2G|1G),
- +B(2G1G)(2G|1R),
+7(2G|1G)(2G|1G),[>, (%)
which Egs. (3) and (4) reduce simply to
0#p=[7(2GI1G) (26 |1G), 1% ©)

This tells us that the amplitude y must be nonzero, and Egs.
(3) and (4) then tell us that & and B cannot be zero either. So
we can do the trick with any two choices of nontrivial local
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one-particle observables to be measured in mode 1 on the
right and on the left, and any state | ) of the form (2) with
three nonzero amphtudes1 a, 3, and .

How big can we make the probability P for the “impos-
sible” 22GG events? The coefficient |y* appearing in Eq.
(6) is determined by the normalization 1=(¥|¥) together
with Egs. (3) and (4):

(2G]1G)*  [(2G|1G),|*
[(2G[1R),[* " [(2G[1R),*)

Evidently for given (ZGIIG)I and (2G[1G),, p is biggest
when v is largest, and vy is biggest when the magnitudes of
(2G|1R), and (2G|1R), are as large as possible. So to
maximize p we should take the states [2G) on each side to
be linear combinations of just the two states IlG) and |1R)
on that side. If we define

p=l2GIIG) %, p,=[(2G]1G),/%, (8)
then ' '

|<2G|1R>ll2=1_p13 l(zGI1R>rI2=1_Pr! (9)
and Egs. (6) and (7) reduce to

=pml—pﬂpxl—pJ
1-pp, '

Maximizing Eq. (10) gives uniquely p,=p,=1/7, where 7is
the golden mean, 3(/S+1), and this gives p the maximum
value 1/7=0.090 17.

If you are willing to settle for a p that is just a hair less
(9% exactly), then by taking p,=p,=% you can get very
simple numerical relations between the relevant eigenstates
of observables 1 and 2—helpful in explaining the gedanken
demonstration to a freshman or sophomore physics class or
even a class of suitably informed nonscientists. These rela-
tions are given in Appendix A and used to illustrate the im-
portant fact that no data collected entirely at one end of the
laboratory can reveal how the switch is set on the detector at

=]

™

(10)

the other end.

III. THE ABSENCE OF AN EPR ARGUMENT

A philosopher® once asked why I had given the two boxes
in Ref. 1 three switches rather than just two, as in many of
the experimental tests for violations of the form of Bell’s
inequality given by Clauser and Horne.'* My reason was that
the gedanken demonstration of Ref. 1 relies on the perfect
correlations, for appropriately paired switch settings, of a
pair of particles in the singlet state. From these one con-
cludes in the manner of Einstein, Podolsky, and Rosen'” that
the particles must carry to their detectors identical instruction
sets, telling them what color to flash for every switch setting.
If there are only two settings at each detector, and the colors
are always the same when the switches have the same set-
ting, then it is easy to distribute identical instruction sets to
the particles that reproduce the singlet state statistics regard-
less of how the switches end up. When one has a third per-
fectly correlated pair of switch settings, however, it is pos-
sible to find singlet-state statistics that instruction sets cannot
reproduce.

But the actual laboratory experiments that explore these
peculiar correlations do get away with just two settings at
each detector. This is -because they do not rely on the EPR
argument to make their point. Real experiments cannot rely
on the EPR argument because perfect correlations .are an .
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idealization beyond experimental reach. Instead, laboratory
experiments test certain other assumptions about the joint
distributions of colors revealed by the various pairs of switch
settings. Although those assumptions, which I discuss in Sec.
1V, are certainly plausible enough to be worth testing, they
lack the simplicity .and intuitive power of the EPR assump-
tions. And that is why my first gedanken demonstration had
three switch settings at each detector, rather than just two.

Yet Hardy has managed to come up with an argument
using only two settings at each detector that makes a gedan-
- ken demonstration every bit as compellingly mysterious as
my three-setting version, and a lot simpler to analyze. How
did he do it?

He did it by working with data that are, surprisingly, just
as powerful as the EPR data for purposes of the gedanken
demonstration even though they are not as strongly corre-
lated. In particular, Hardy’s correlations do not permit one to
invoke the EPR reality criterion.

According to EPR an “element of reality”—i.e., a pre-
existing value for an observable or, in the language of my
earlier gedanken demonstrations, an entry in an “instruction
set” specifying the color to be flashed by a detector—must
exist if one can predict in advance the result of a localized
measurement of that observable by other localized experi-
ments done far away. In the Hardy experiment the condition
of predictability is not invariably met. Sometimes you can
predict with certainty the result of a distant experiment but
you can only do it in an uncontrollable fraction of the runs.
If, for example, you try to learn what the particle on the left

will do at a type 1 detector by measurements on the faraway ~

particle on the right, you run into a problem. If you subject
the particle on the right to a type 1 detector, then if that
detector flashes red you can indeed predict with certainty that
the particle on the left will cause its detector to flash green,
since 11RR is never observed. But if the detector on the
right flashes green when both switches are set to 1, you are in
no position to predict what will happen on the left. Since the
outcome on the right is not under your control, your ability
to predict with certainty the behavior on the left is a matter
of chance. If you’re lucky you can do it; otherwise you can-
not. The same difficulty arises if instead you subject the par-
ticle on the right to a type 2 detector. If it flashes green then
you can predict red on the left with certainty, since 12GG
never occurs, but if it flashes red then you are stumped. Simi-
lar problems arise if you want to predict what happens on the
left at a type 2 detector, or what happens at either type of
detector on the right.

In contrast to the two earlier versions of my gedanken
demonstration, the data no longer demand that every particle
must always carry a set of instructions telling its detector
what color to flash for each setting of its switch. In keeping
with this, the brief argument in the final paragraph of Sec. I
makes no explicit reference to instruction sets, talking in-
stead about particles that “allow” and particles that “re-
quire.” While particles that “require” presumably carry in-
structions, particles that “allow” need not.

To emphasize the difference between the Hardy version of
the device and its predecessors we can make the argument
clumsier by trying to reformulate it in an appropriately gen-
eralized langnage of instruction sets. In addition to instruc-
tions R, “flash red,” and G, “flash green,” we must now
allow a third designation, N, signifying that the particle car-
ries no instruction to a detector specifying what color it must
flash. We can then examine when the data require a particle
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to carry to its detector instructions R or G and when they
allow it to carry the noncommittal noninstruction N.

To account for the correlations for all four pairs of switch
settings we suppose that each particle carries a generalized
instruction set XY, where X and Y, which can each be either
R, G, or N, specify the behavior at type 1 (X) and type 2 (Y)
detectors. We must admit the additional noninstruction N
because, as noted, in the Hardy experiment we do not have
the kinds of correlations that in conjunction with the EPR
argument require every particle to specify the color to be
flashed at either type of detector. In the EPR situations of my
earlier gedanken demonstrations N cannot appear in an in-
struction set because a particle carrying the noninstruction N
for a given type of detector cannot manage invariably to
flash the same color as its partner flashes at a detector of the
same type. :

But although the Hardy experiment allows noninstructions
N, it does not permit very many. Suppose, for example, a
particle has the noninstruction N for a type 1 detector. Be-
cause this allows its type 1 detector to flash red, its partner
must have the instruction G for a type 1 detector, since
11RR never occurs: This in turn requires the original particle
to have the instruction R for a type 2 detector, because GG
never occurs when the switches have different settings. For
this same reason, since a type 1 detector can flash green in
response to a particle carrying the noninstruction N, its part-
ner must have the instruction R for a type 2 detector. We
conclude that a particle can carry the noninstruction N for a
type 1 detector provided the full instruction set-it carries is
NR and provided its partner carries the instruction set GR. A
similar line of thought establishes that a particle can carry
the noninstruction N for a type 2 detector, provided the full
instruction set it carries is GN and its partner carries the

- instruction set RR. In neither case is the flexibility intro-

duced by a noninstruction N' enough to permit a 22GG run.
Whether the N is associated with a type 1 or type 2 detector,

" at least one of the particles must carry an R for a type 2

detector. Since runs without any noninstructions N are even
less flexible, there is never any possibility of a 22GG run.
From the point of view of the earlier gedanken demonstra-
tions, the surprising thing about the Hardy argument is that
even though the correlations are not strong enough to support
an EPR argument, those correlations that continue to be
perfect—the strict absence of any 11RR, 12GG, or 21GG

. runs—suffice to prohibit 22G G runs with the full force of

the earlier arguments. And the analysis is now so wonder-
fully concise that it can be stated in a few short sentences
without explicitly invoking instruction sets at all.

IV. INEQUALITIES FOR REAL EXPERIMENTS

Hardy’s analysis is an example of what Greenberger,
Horne, and Zeilinger call a “Bell’s theorem without inequali-
ties.” In both the Hardy and GHZ argument one deduces
from strong correlations in the outcomes of experiments in
distant places that a new correlation experiment cannot have
a certain outcome. One then discovers that the new experi-
ment sometimes (and in the case of GHZ always) does have
that forbidden outcome. These arguments refute the implicit
hypotheses underlying the deduction more directly than the
earlier forms of Bell’s theorem. By resting the analysis en-
tirely on events of probability 1 or 0, they also reduce the
room for interpretive maneuver in assessing what went
wrong with the deduction.
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Hardy® has suggested that real versions of gedanken ex-
periments involving all or nothing probabilities should pro-
vide more clear-cut laboratory demonstrations of quantum
nonlocality since in the present case, for example, the bizarre
behavior can be established by a single observation of
22GG. This is questionable. The problem is this:

The fact that 11RR, 21GG, and 12GG are never ob-
served is a deduction from theory—a consequence of the
quantum mechanical structure of the state ['¥). If the theory
is correct then a single observation of 22GG refutes the
apparently unavoidable explanation of those three absolute
absences in terms of information carried by a particle to its
box. But without prior assurance that 11RR, 21GG, and
12GG never happen, an observation of 22G G no longer has
momentous consequences. It would, of course, be revolu-
tionary if quantum mechanics were incorrect in so funda-
mental and elementary an application as its prohibition of
these three outcomes. But if we are willing to accept without
laboratory tests the theoretical predictions for the 11RR,
21GG, and 12GG correlations, then why not accept them
for the 22G G correlations as well and settle for the gedan-
ken experiment, which makes a powerful conceptual point
without the bother, expense, and inevitable ambiguity of any
real laboratory investigation?

Are there compelling reasons to take the trouble to per-
form a real version of the gedanken experiment beyond the
pleasure derived from performing a superb magic trick?
While it would be startling indeed if quantum mechanics
turned out to be wrong in so elementary and straightforward
an application, even granting its validity one could harbor
worries that some hitherto overlooked interactions were re-
sponsible for disrupting the predicted correlations as the par-
ticles flew apart to their detectors, preventing them from at-
taining the strong forms necessary to produce so
distressingly unintuitive a body of data. A friend of mine
once maintained that anything—a passing cosmic ray in the
next room—would suffice to disrupt the delicate correlations
of an EPR state. One can demonstrate that cosmic rays are
not up to that job, but perhaps something we know nothing
about comes into play in such situations, weakening these
inexplicable correlations in a perfectly respectable quantum
mechanical manner, through hitherto unknown interactions.
Perhaps these theoretically predicted correlations should be
viewed not as a gedanken demonstration of how strange the
world can be, but as establishing constraints on which of the
states described by quantum mechanics we are actually able
to achieve in real world applications with stuff that the world
actually makes available to us.

If the experiment is performed to test whether something
we haven’t yet been clever enough to notice comes into play
and disrupts the correlations between the particles, then it
would be ridiculous to assume that as the particles separated
such unknown interactions with hitherto undetected entities
disrupted only the 22 correlations. Any sensible experimental
test of whether nature manages to spare us the intellectual
distress of Sec. I ought surely to probe all the ingredients of
that distress: both the existence of 22GG events and the
nonexistence of 11RR, 21GG, and 12GG events. But even
with perfect detectors one can only establish that the prob-
ability of an event is of the order of or less than the inverse
of the number of times it fails to happen.!” With the imper-
fect detectors available for real experiments the ambiguities
in ruling out 11RR, 21GG, and 12GG events are greater
still. But what becomes of our argument if we can deduce
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from the data only that 11RR, 21GG, and 12GG events are
highly improbable? One feels that under such circumstances
22GG should also be highly improbable. Can we arrive at
some relations between these improbabilities as apparently
compelling as our conclusion that impossibilities implied im-
possibility? We might reason something like this:

Let p(11RR), p(21GG), p(12GG), and p(22GG) be
the probabilities of getting those particular colors in those
particular runs. Consider only the runs in which the tosses of
the coins resulted in both detectors operating in mode 2.
Since those coin tosses selected an entirely random quarter
of all the runs, it is surely safe to assume that had those
tosses resulted in other than 22 runs, the frequencies of col-
ors flashed in those runs would have been given by the ap-
propriate probabilities p(ijXY). Now consider that fraction
p(22GG) of the 22 runs in which both lights flashed green.

. What might have happened in any particular such run if the

switches had ended up not 22, but 21, 12, or 11? Under the -
plausible assumption that an alteration of the switch on one
side would not have affected the outcome on the other side,
we could have had 12XG, 21GY, or 11VW. Under the (per-
haps somewhat less compelling) assumption that the result
we would have had for a setting 1 on one side also should
not depend on the setting on the other side, we can identify V
with X and W with Y, replacing 11VW with 11XY. But if
we do this, then regardless of whether XY is RR, RG, GR,
or GG, at least one of the three possibilities 12XG, 21GY,
or 11XY will be one of the improbable ones 12GG, 21GG,
or 11RR. Thus the combined frequencies of GG among 12
runs, GG among 21 runs, and RR among 11 runs must be at
least as great as the frequency of GG among 22 runs:

p(22GG)<p(21GG)+p(11RR)+p(12GG).  (11)

The relevance of an inequality like this to the case of
imperfect detectors was first noted by Clauser and Horne.!*
All subsequent experiments have tested appropriate forms of
this “Bell-CH” inequality. The derivation I have given is
my cartoon version of an argument that Henry Stapp!® has
been refining over many years, with the aim of extracting
nonlocality directly from the theoretical predictions of quan-
tum mechanics without appealing to possible hidden vari-
ables or to EPR elements of reality. Jon Jarrett!® has given an
analysis of the assumptions underlying Eq. (11) that many
people have found more congenial. In Appendix B I sketch
Jarrett’s argument in the context of this gedanken demonstra-
tion.

Violating the Bell-CH inequality is all that a real experi-
ment with a finite number of runs and/or imperfect detectors
can accomplish. The existing experimental tests of that in-
equality exploit choices of the observables 1 and 2 on the left
and right. of Eq. (11) that lead to theoretical probabilities

p(22GG)=§2+v2)=0.427, (12)

p(21GG)+p(11RR)+p(12GG)=12-v2)=0.220,
(13)

leaving a comfortable margin for experimental error. The
corresponding numbers for the strongest version of Hardy’s
experiment are

2 \s
p(ZZGG)”—"(Wg) =0.090, | (14)
p(21GG)+p(11RR)+p(12GG)=0. (15)
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Thus any experiment using real detectors will require better
instruments to confirm the violation of Eq. (11) in a Hardy
state than are needed to establish a violation with the data
(12) and (13) predict for the existing tests.

The importance of the Hardy states is not that they provide
the basis for a more definitive experimental test. Even if such
a test were accurate enough to establish a violation of the
Bell-CH inequality in a Hardy state it would, like the other
experimental tests, only have implications for the rather
subtle assumptions underlying that inequality in either the
Stapp or the Jarrett versions of its derivation. It is certainly a
matter of great interest to establish that those assumptions
are in conflict with experiment. But the additional impor-
tance and the great beauty of the Hardy experiment lies in
what it tells us, as an extremely simple and direct deduction
from elementary quantum theory, about the world that theory
describes in the absence of hypothetical and hitherto unde-
tected ~ correlation destroying interactions. The argument
leading to the vanishing of p(22GG) from the vanzshmg of
p(21GG), p(11RR), and p(12GG), as given in Sec. L, is
_ both simpler and more compelling than the arguments that
underly the derivations of the Bell-CH inequality (11) when
those probabilities are not zero. The brisk gedanken refuta-
tion of those hypotheses stands in its pristine simplicity as
one of the strangest and most beautiful gems yet to be found
in the extraordinary soil of quantum mechanics.
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APPENDIX A: A NUMERICALLY SIMPLE
EXAMPLE

As noted at the end of Sec. II, taking p,=p,=% gives a
probability p(22GG) of 9%, only a shade less than the
maximum possible. This choice is convenient for illustrating
at an elementary level another important and very general
feature of the Hardy states (possessed by any such superpo-
sition of orthogonal product states). A Hardy state (2) with
p(22GG)=9% is given by

[w)=\JH1R)I1G),+ \H1G)I1R), ~ H1G)|16),,
(A1)

with the eigenstates of observable 2 defined in terms of those
of observable 1 (for either particle) by

26)=/116)+ \[H1R),

2R)=—[416)+[¥1R). | (a2)

It is an elementary exercise® to calculate that the probabili-
ties of all the outcomes for each of the four possible settings
of the detectors are as given in the following table:
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GG RR RG GR
- 12 0 0.15 0.225 0.625
21 0 0.15 0.625 0.225
22 0.09 0.64 0.135 0.135

11 0.25 0 0.375 0.375

These probabilities do indeed have properties (a)—(c) of Sec.
L .

With this table one can make the important point that al-
though the data in a Hardy state strongly suggest Einstein’s
“spooky actions at a distance,” the spookiness only emerges
when one tries to explain the correlations between outcomes
at both ends of the laboratory. One cannot change the behav-
ior at any given end by altering the only thing that one can
actually control at the other end—the setting of the faraway
detector. The probability, for example, of getting red on the
left in a 21 run is p(21RR)+p(21RG)=0.15+0.625
=0.775; the probability of red on the left in a 22 run, on the

. other hand, is p(22RR)+p(22RG)=0.64+0.135=0.775—

i.e., exactly the same.

APPENDIX B: JARRETT’S JUSTIFICATION OF THE |

BELL~CH INEQUALITY

I give here a summary of the justification for the mequal-
ity (11) that follows from the analysis of Jarrett,'® which is
rather different from the informal justification I offered in
Sec. IV. One introduces a parameter X to stand for everything
stemming from the common origin of the two particles that
might account for their correlated behavior at the two distant
detectors. One expresses the - probability distributions
p(ijXY) as a suitably weighted average of the distributions
P (ijXY) associated with the various possible conditions A

‘prevailing at the source:

p(ijXY)=(p\(ijXY)), (B

where the angular brackets ( ) denote such an average over \.
It is an elementary probabilistic identity that

PAGXY)=pLGIX V)P (Y), (B2)

where pl(ijX|Y) is the probability (for given \,i,j) of get-
ting X on the left in just those runs in which the result on the
right was Y, and p}(ijY) is the probability (for given A,i,j)
of getting Y on the right regardless of what happens onthe
left. Jarrett distills everything into two assumptlons The
first, which he calls “completeness”,? is that pi(ijX|Y)
does not depend on ¥

PA(IiX|Y)=pi(ijX). (B3

This is a formal statement of the intuition that nothing be-

yond what was available to the particles at their common
source can be needed to account for their correlated behavior.
The assumption (B3) states that it ought to be possible to
specify (through \) the features the particles acquired at their
source in enough detail that no further information about the
subsequent behavior of the particle on the right beyond what
a knowledge of \ implies can alter our expectations for what
happens on the left. I elaborate no further than that since my
point here is only that Jarrett’s assumptions are more subtle
than those behind the argument of Sec. I.
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Jarrett’s second assumption, which he calls “locality”,? i

that for no value of A can the distribution of results at one
detector depend on the setting of the other:

PAIX)=py(iX),  P}(ij¥)=p}(jY). (B4)
While a failure of this assumption for the distributions aver-
aged over A would imply the ability to signal instantaneously
at a distance,? imposing it for each value of N individually is
a strong requirement, since instantaneous signalling might

still be impossible if A were inherently uncontrollable.
Using the assumptions (B3) and (B4) of completeness and

locality to simplify the identity (B2), the general form (B1)

of the distributions p(ijXY) reduces to
p(HXY) =(p\(iX)p}(jY)). (BS)

Given this,
directly:?*

the Bell-CHSH inequality (11) follows .

‘We have
P(22GG)=(p}(2G)p}(2G))

=2 (PA2G)p\ (1X)p;(1Y)p; (2G)), (B6)
Xy
since
1=2 pi(1X)=2, pi(1Y). (B7)
X Y
But because of the normalization conditions
1=2 pi(2X)=2, pi(2Y), (B8)
X Y

and the non-negativity of p} and pi, the terms appearing on
the right of Eq. (B6) can be bounded as follows:

(PL(26)PL(LIR)PL(IR)PL(2G))<(p\ (1R)p;(1R))=p(11RR); | | (B9)

(PA(2G)p)(1G)p}(1R)PL(2G))<(p\(1G)p}(2G))=p(12GG);

and

(B10)

(PA(2G)PA(1R)P}(1G)p}(2G)) +(ph(2G)pi(1G)ps(1G)p}(2G))

=(p\(2G)pi(1G)p}(26))<(p}(2G)p}(1G))=p(21GG).

Equations (B6), (B9), (B10), and (B11) give Eq. (11).
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It is suggested how Bernhard Riemann might have discovered General Relativity soon after 1854
and how today’s undergraduate students can be given a glimpse of this before, or independently of,
their study of Special Relativity. At the same time, the whole field of relativity theory is briefly

surveyed from the space—time point of view.

I. INTRODUCTION

Historically, Einstein’s General Relativity of 1915—the
theory of curved spacetime—arose as a generalization of his
Special Relativity of 1905—the theory of flat spacetime—
much as the geometry of curved surfaces arises as a gener-
alization of the Euclidean geometry of the plane. This his-
torical sequence from the special to the general theory is
followed in every presentation of the subject known to me.
And for good reason: in this way the required level of math-
ematical sophistication rises only gradually, whereas the in-
verse sequence would seem to require some heavy math-
ematics up front. However, it is amusing and instructive to
fantasize how, in the best of all possible worlds, General
Relativity might have been developed ab initio long before
1905, for example by Bernhard Riemann soon after 1854,
and how it could then have led to Special Relativity. At the
same time, a mathematically diluted version of such a devel-
opment can prove to be of interest to bright undergraduate
students. It gives them a quick and direct taste of spacetime
and of General Relativity, two topics which are often prom-
ised them “at the end of Special Relativity,” but which only
too often are never quite reached. This sequence also well
illuminates the inner logic and self-sufficiency of General
Relativity.

The following is a sample of such a development, which,
with suitable omissions, can be presented to students in an
hour’s lecture.

II. HOW THEORIES ORIGINATE

New theories are as a rule not developed for sport. Rather,
they arise in response to difficulties, paradoxes, or puzzles in
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the older theories. Thus Special Relativity grew out of diffi-
culties in reconciling Maxwell’s theory with Newtonian ki-
nematics, and, in spite of Einstein’s well-known disclaimer,
it could hardly have come into being without the acute para-
dox of the Michelson—Morley experiment of 1887. This ex-
periment showed that, no matter how fast you chase a light
signal, you can never reduce its speed relative to you. Gen-
eral Relativity, on the other hand, has its roots in the much
older mechanics of Newton. But Newton’s theory, too, is by
no means free of puzzles. Above all, it has long been criti-
cized for its reliance, if not necessarily on absolute space, on
the set of global inertial frames whose absoluteness (“they
act but cannot be acted on”) so offended the scientific sen-
sitivities of Mach and Einstein. And then there is the mystery
of the equality of gravitational and inertial mass, appearing
simply as a postulate in Newton’s theory. Why should a
quantity measuring a body’s inertia or resistance to accelera-
tion act at the same time as its “gravitational charge?” It

would seem that these two puzzles alone (and there were

others) could drive a man to search for a new theory, i.e., a
new mathematical model, especially when a new and suit-
able mathematical avenue had just opened up. The man
might have been Riemann, and the avenue his newly discov-
ered differential geometry of (irregularly) curved spaces of
higher dimensions.

II1. GAUSS’ GEOMETRY OF SURFACES

The year 1854 was a memorable one in the annals of the
famous old German university town of Gottingen. The re-
cently developed railroad had finally reached the town. And
also, though unbeknown to most of its good burghers, the
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