Power Developed by the Science Fair Motor as a Function of Applied Voltage

10/16/06

The instantaneous power expended when the rotor is at an angle θ with respect to the static applied magnetic field is $P(\theta)=V_{c}(\theta) I(\theta)$, where the EMF developed in the rotor coil as it sweeps through the field is

$$
\begin{equation*}
V_{c}(\theta)=-\frac{d \Phi}{d t}=-\frac{d \Phi}{d \theta} \frac{d \theta}{d t}=\omega \Phi_{\max } \sin \theta . \tag{EQ1}
\end{equation*}
$$

Here ω is the angular rotational velocity and the RHS is found from the instantaneous flux in the coil

$$
\begin{equation*}
\Phi(\theta)=\Phi_{\max } \cos \theta, \tag{EQ2}
\end{equation*}
$$

where $\Phi_{\max }$ is the flux seen when the coil (solenoid) is parallel to the applied field and intercepting the maximum flux. In general there is an additional contribution $-L(d I / d t)$ to Eq. 1 , but at the very low speeds seen in this motor it can be neglected. The current through the winding is determined by the voltage across the coil resistance R

$$
\begin{equation*}
I=\frac{V-V_{c}}{R} \tag{EQ3}
\end{equation*}
$$

where V is the applied battery voltage, so

$$
\begin{equation*}
P(\theta)=\frac{\left(V-V_{c}\right) V_{c}}{R} \tag{EQ4}
\end{equation*}
$$

The average power expended per each half revolution is the integral of $P(\theta)$ through the angles that voltage is applied (that is through the angles θ_{1} to θ_{2} defined by the commutator contacts), divided by π,

$$
\begin{equation*}
\langle P\rangle=\frac{1}{\pi} \int_{\theta_{1}}^{\theta_{2}} P(\theta) d \theta . \tag{EQ5}
\end{equation*}
$$

In the present application, the torque applied to (and by) the motor is constant and is given by the weight $m g$ at the end of the string that hangs from the axle at a radius $r_{0}, \tau=m g r_{0}$. In the well known relation between torque and power

$$
\begin{equation*}
\langle P\rangle=\omega \tau \tag{EQ6}
\end{equation*}
$$

τ is constant in this case.

Now we can solve for the motor behavior. Equations 1, 4, 5 and 6 give the angular velocity in terms of applied voltage

$$
\begin{equation*}
\omega=\frac{a}{b} V-\frac{\tau}{b}, \tag{EQ7}
\end{equation*}
$$

where the positive constants a and b are given by

$$
\begin{gather*}
a=\frac{\Phi_{\max }\left(\cos \theta_{1}-\cos \theta_{2}\right)}{\pi R}, \tag{EQ8}\\
b=\frac{\Phi_{\max }^{2}}{\pi R} \int_{\theta_{1}}^{\theta_{2}}(\sin \theta)^{2} d \theta . \tag{EQ9}
\end{gather*}
$$

Substituting Eq. 7 into Eq. 6 gives the final expression for average motor power as a function of voltage,

$$
\begin{equation*}
\langle P(V)\rangle=\frac{a \tau}{b} V-\frac{\tau^{2}}{b} . \tag{EQ10}
\end{equation*}
$$

The power is linear in voltage and intersects the horizontal axis at $V_{\min }=\tau / a$, which is the minimum voltage required to start the motor for the given torque $\tau=m g r_{0}$. We've assumed that friction can be ignored.

