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The 10-dimensional supersymmetric Yang-Mills theory is constructed in the light-cone gauge. 
When the theory is dimensionally reduced to four dimensions it is shown that the corresponding 
N = 4 theory is conveniently described in terms of a scalar superfield. This formalism avoids the 
problem of auxiliary fields but is Lorentz invariant only on the mass shell. Similar formalisms in 
terms of scalar superfields are also sketched for the other supersymmetric Yang-Mills theories as 
well as for N = 8 supergravity. 

1. Introduction 

The in t roduct ion of supe r symmet ry  into qua n tum field theories  has led to theories  

with improved  q u a n t u m  propert ies .  In part icular  the Yang-Mil l s  gauge theory  with 

the maximal  supersymmetr ic  extension (N = 4) [1, 2] has been  found  to possess 
unique proper t ies  at the qua n t um  level [3]. There  are very s trong indications that  

this theory  is a finite qua n t um  field theory.  Originally this theory  was found  in two 

different ways, one  of which was th rough  the construct ion of supersymmetr ic  
Yang-Mil l s  theories  in space- t imes of higher  d imension [1]. It was found  that  the 

10-dimensional  space is the largest space that  carries a supersymmetr ic  Yang-Mil ls  
theory  and by dimensional  reduct ion this can be taken into 4 dimensions  where  it 

emerges  as an N = 4 ex tended  theory.  On  the o ther  hand, this theory  was already 
known f rom the N e v e u - S c h w a r z - R a m o n d  dual model  [4], a mode l  which exists 

only in 10 dimensions.  By letting the Regge  slope a '  tend to zero in the open-s t r ing  
sector of the mode l  one  gets the Born  terms of a Yang-Mil l s  field coupled to a 

spinor  field, which in fact turns out  to be the Born  terms of the 10-dimensional  

supersymmetr ic  Yang-Mi l l s  theory  [2]. 
In 4 d imensions  the theory  contains 1 vector  field, 4 spinor fields and 6 scalar 

fields all in the adjoint  representa t ion  of  the gauge group.  The  lagrangian is quite 
compl ica ted  and it is difficult to  pe r fo rm extensive quan tum calculations in this 
formalism. Hence  much  effort has been devo ted  to the search for a more  efficient 
formalism. The  natural  candidate  for such a formalism is the superspace approach  

[5], where  the supe r symmet ry  is directly built into superfields. The  most  powerful  
technique  applied so far is the one  using N = 1 superfield F e y n m a n  graphs [6]. 
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However ,  one generally expects the op t imum formalism to be based on superfields 
which are representat ions of the full N = 4 supersymmetry.  Such a formalism has 
turned out to be more difficult to find than was originally anticipated. In fact there 

are indications [7, 8] that the form in which the theory has been presented so far 
does not admit a solution to this problem. This fact has made the theory even more 
elusive and has created an urge for new approaches.  

Recently a new development  has occurred. The old Neveu -Schwarz -Ramond  

dual model was known to have inconsistencies such as tachyons. It was conjectured 
by Gliozzi, Olive and Scherk [2] that the model could be made consistent by 
projecting out some of the states. This program has now been implemented by 
Green and Schwarz [9]. They have constructed a new spinning string model where 
this projection is automatic. This model which is supersymmetr ic  in 10 dimensions 
still contains the Yang-Mills  theory as a certain zero-slope limit. In fact one can 
now also construct the one- loop contribution to the scattering amplitudes in the 

same limit [10] and it is found to be remarkably  simple, indicating an underlying 
formalism in terms of a scalar field of some sort. 

One key element  in the formalism of Green  and Schwarz is the use of the 
light-cone gauge. In fact nobody has found a way to construct the model in a 
Lorentz  covariant fashion. This might be a genuine problem in the sense that such 
a formalism is overwhelmingly complicated. In this paper  we will reconsider the 
Yang-Mills  field theory and show that also for this model the choice of the light-cone 
gauge is very convenient  for writing the theory in a manifestly supersymmetric  
way. We will show that there is a very compact  way to write this theory in terms 
of a s c a l a r  superfield. Having given up the manifest Lorentz  covariance, however,  
we will have to check all physical amplitudes explicitly in the final S-matr ix  to 
ensure their independence of the Lorentz  frame chosen. 

An alternative approach to a viable (conventional) superfield formalism is to 
search for auxiliary fields to close the super-symmetry  algebra. It  has been clear 
for some time that if such a set of auxiliary fields exists for the N = 4 Yang-Mills 
theory it must be extremely complicated [7, 8]. In the light-cone formalism where 
we deal only with the physical degrees of f reedom, this problem is avoided. The 
action is invariant under a subalgebra of the supersymmetry  algebra and the physical 
degrees of f reedom span a representat ion of this algebra. Hence  in our formulation 
supersymmetry  (or rather a subalgebra of it) is a symmetry of our action while 
Lorentz  invariance is present  only on-shell. In the original version of the theory 
the opposite is true; it is manifestly Lorentz  invariant but supersymmetric  only 
on-shell. 

The paper  is organized as follows: In sect. 2 the 10-dimensional supersymmetric  
Yang-Mills theory is written in the light-cone gauge and in sect. 3 this theory is 
dimensionally reduced to 4 dimensions. The corresponding superfield formulation 
is introduced in sect. 4 and we end in sect. 5 with a brief discussion of light-cone 
superfield formulations of other supersymmetric  theories. 



L. Brink et al. / N = 4 Yang-Mills theory on the light cone 403 

2. The 10-dimensional supersymmetric Yang-Mills theory in the light-cone 
gauge 

Our  starting point is the supersymmetr ic  Yang-Mills theory in 10 dimensions. 

The action is [1] 

I 4 1 0  / ! r r a  ~ v a  1 . - a  Ix a 
S =  a x t - c r , ~ r  +~lA 7 D~A ) ,  (2.1) 

where the vector and spinor fields transform according to the adjoint representat ion 
of some semisimple Lie group and the spinor field satisfies both the Majorana  and 
the Weyl constraints (for notations and conventions, see the appendix). We now 
choose the light-cone gauge: 

A +a = 0 .  (2.2) 

With this gauge choice it is not necessary to introduce F e y n m a n - F a d d e ' e v - P o p o v  

ghosts and the gauge choice can be directly implemented in the action. We now 

split the spinor into its two light-cone components:  

A=½(7+7 + 7 _ 7 + ) A - ; t + + Z  . (2.3) 

Fur thermore ,  we introduce the following non-propagat ing fields 

S a + a i a abc  [ 1 b + c 
=(9 A + + ( g A i + g f  [~7(Ai (9  A , )  

__1 -b + c ] 
+½io+ (A+7 .a.÷) (2.4) 

1 X ~ _ = , ~  ~ + ~-~'; 'Y-7 (9~A+ 

1 abc 1 t7 -7  a + ~  ) (2.5) 

Eventually in the effective action we will Fourier t ransform to momen tum space. 
When this is done the factors ((9+) -1 will be harmless. Note,  however,  that some 
care must be exercised when they are used to perform "partial integrations". We 
now write the full action as 

- -10 [ 1 ,* a r ~  ,* a 1 . -  [ ]  
- -  41/~+~/  O-T S = Cl Xl~/-ti t-2,~i - A+ 

+gf"b~[OiA~-~( (9+AbA~ ) 

a b c 
- ( g i A j A i A j  

1 . - a  a b  (gJ c 
+ ~ l  A +Z-l  i ' Y i ~ / j T -  - ~  A + 
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1 - b  c ] 
+ ~iOiA~ - ~  (X+y_A +)] 

2 fabc fade [ ! , t  b a c a r l a  e + g - -  41"x i z " x j r x  i z"x j  

1 1  
2 3 + (o+AbA~) (O+AdA~) 

1 1 

-~i U (O+Aba~ .) 

1 1 -b  c 1 -d  ~ ] 

J 

+ i Sa Sa _ 1 . . . .  + a ] 2 - ~ t X  3'+o X ] .  (2.6) 

In a functional integral we can change integration variables f rom A~ and ;t ~ to S a 

and X~ and integrate out the terms depending on these auxiliary fields. This 
integration should be per formed with care so that possible topological effects are 
not eliminated. However ,  we will use this formalism mainly for perturbat ion 
expansions and for this purpose we can neglect new functional dependences intro- 
duced by topology. Therefore ,  f rom now on, we simply drop the terms depending 
on S a and X a. Note  that it is at this stage we lose Lorentz  invariance. However ,  it 
is possible to represent  the Lorentz  t ransformations non-linearly on A i and A -  
and on A+ and It_ by making compensat ing gauge transformations.  Since under 
those transformations S a and X ~ _ do transform it is clear that we lose Lorentz  
invariance off-shell if we eliminate them. 

The original action (2.1) is invariant under the supersymmetry  transformations 

a , -  a 

6A,~ = t a y ~k  , (2.7) 

- 2 ~  a r , ~ .  (2.8) 

The,  by now classical, p rob lem associated with these transformations,  is that they 
do not close to form an algebra. To achieve closure it is necessary to introduce 
auxiliary fields but, alas, it is not known how to do this. However ,  we now restrict 
the paramete r  a of the supersymmetry  transformations to a_ [cf. (2.3)]. Then the 
physical degrees of f reedom transform as 

6 A  ~ = i~yiA ~_ , (2.9) 

= y  y+aO A~ . (2.10) 

This algebra closes. It  is a subalgebra of the supersymmetry  algebra, a and A+ 
are both 8-dimensional spinors under SO(8) implying that the action has an 
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invariance corresponding to 8 grassmannian generators,  which in fact is the largest 
symmetry  one can expect. 

We can also easily understand the symmetry  algebraically. Consider the 10- 
dimensional supersymmetry  algebra 

{O~, 0 B} = (y")~e,, (2.11) 

where (~/,) 0 contains a Weyl projection. If we project with ½y+y_ we obtain 

{O+~, (~0+} = (y+) 0p+, (2.12) 

where Q+ transforms as a spinor under SO(8). This algebra, which we will call 

restricted supersymmetry, is essentially just a Clifford algebra. Under a transforma- 

tion the parameter must be "minus-projected", i.e. a_. 

At this stage one can introduce a superfield with an anti-commuting coordinate 

0 which is an 8-dimensional spinor. We will, however, delay the presentation of 

that formalism to a future publication and concentrate here on the form of the 

theory obtained by dimensional reduction to the 4-dimensional Minkowski space. 

3. Dimens ional  reduction to 4 dimensions 

In the usual dimensional reduction [11] one imagines a certain number  of space 

dimensions to be circular. Then in the simplest case we can demand the fields not 
to depend on the corresponding coordinates so that those can be integrated away 
in the action. In the case we investigate we choose 6 of the 8 transverse coordinates 
to be circular. We then break the SO(8) invariance 

SO(8) ~ SO(6) × SO(2) 

SU(4) x U(1) .  (3.1) 

In this way we obtain a theory with an SU(4) internal global symmetry.  The SO(2) 
part  will be just the helicity group. Consider so the action (2.6) under the dimensional 
reduction above. For  the Bose fields we make  
(m, n . . . .  = 1, 2, 3, 4): 

a i -  a • a A -~x/~(A1 + I A 2 ) ,  

c m 4 a  __ ~ a • a = 4~(A,,+3 +/Am+6) , 

-- a 1 f~pqa ( C tuna) .  
f i n n  : 2Erntlpq I.J " : "  

the following identifications 

(m # 4) ,  

(3.2) 

(3.3) 

(3.4) 

To reduce the spinor terms we choose a particular representat ion of the y-matr ices  
in 10 dimensions: 

Y =  12 
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( o  ;) 
3/ = _ i ® I 8 ,  i = 1 , 2 , 3 ,  

o) (o 
] / ' "  = 0 12 0",, 0 / ' m, n = 1, 2, 3, 4 ,  

where  we use the matr ices  3',.. (an t i symmetr ic  in m and  n)  ins tead of ]/4, ]/5, , 
O ' "  and  O,.. are 4 x 4 matrices:  

(O ' '")~, t  = 6mk6,. , l  - & . , k S . . ,  

( O . , . ) k l  - ! .o  --  2Emnpq(P )kl  = e m n k l .  

In  this r ep resen ta t ion  

(10 O ) ( 1 4  O)  11 0 1 9 @ , 
3 / =3/ Y " " " Y = - 1 2  0 - I 4  (ilo - 0 0 0 0 /4 

C =  0 0 - 1  @ 14 0 " 

0 1 0 

(3.6) 

(3.7) 

. , ] /9-  

(3.8) 

(3.9) 

(3.10) 

(3.11) 

/ 0 
0 

1 
x i 
0 

0 

0 
4 

x 

0 

0 

)?1 
0 

0 

0 

t)74 

t°/ 0 

(3.12) 

A+= 

If we now d e m a n d  the 3 2 - c o m p o n e n t  sp inor  h to be  an t i -Weyl ,  M a j o r a n a  (see the 

appendix)  and " + " - p r o j e c t e d  we end  up with a spinor  
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Note that X m is a complex Grassmann number. Finally we have arrived at a 

formalism where the spinors carry no space-time indices. 

We can now introduce (3.2)-(3.12) into the action and obtain the N = 4 light-cone 

action 

S d~x A"  ~ A "  4v..-. mn 

1 ~ . : A ~ O + ~ b C , , ~ c ± I A ~ Z , ~  b ,,-,,,n~ 
r 2.,"x t~,,.., m n  L .  

0--; z-x X mX - -  

-a -b . . . .  ] 
+ i',/2 a-T X mX,t~ + complex conjugate 

1 ( o + ~ d A e )  +g2f'~bcfade[--2 ~ ( o + A b A ~ )  o--- ~ 

l f _ , t r m b A c ~  d Z e  1 ~ 1 + - - d  rune --(a c~.c ) -~,-- ~ ~ ,~n~  - ~  (O+AbA c +O+AbA c) a+ 

1 ,,-~,,b,.-,pq¢~d ~,~ 1 1 + -b  ,,,,,~ 1 + - d  pq~ 
- ~  ,~ ,~,..,_-~.-gO-=(O C . , .C  )0-7(0 CpoC ) 

1 z - b  ~ - c \ ~ d  m e  

1 ~ m b a c \ ~ d  ne  
+ i 4 2  0- 7 ~X ~ ) c,,,,~g 

1 z - b  i ' c , , r ,  m n d - e  
+ i 4-2 O--~ tX ,n~ ) c  X , 

1 , - b  E, rnnc~,~d pe 
+ i 4 2  O- 7 t X m c  ) c , ~ X  

1 ( o + A b ~ C + o + ~ b A c  l~+,~b t..~mnc.~ 1 , - a  ep, - -  +go '..-.ran'-" ) - -  V( vX ) + i4-20+ O+ 

+U(~. ,x  ) (3.13) 
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The derivative 0 (and its complex conjugate 5) is defined by 

-= x/~-(01 + iaz). (3.14) 

The SU(4) invariance of the action is now obvious. The action (3.13) could, of 
course, also have been obtained directly from the 4-dimensional action of ref. [1]. 
The transformations (2.9) and (2.10) now take the form 

6A a = . . . .  lOt X m  , 

3 C  ~ ' ~  = - i  (Otm g na __ Ot n X trio _~ • mnpq ~ p ~  ~ ) , 

8 x  " ~  = 42Ot  " o + A  ° + 4 2 e , .  a+C""a. 

(3.15) 

(3.16) 

(3.17) 

4. The light-cone superfield formulation 

Having the action (3.13), invariant under the restricted supersymmetry (3.15)- 
(3.17), it is now natural to attempt a superfield formulation. In order to do so we 
start by considering the algebra (2.12). Utilizing the 3'-matrix representation (3.5)- 
(3.11) and the fact that O+ has the opposite handedness to h+, we can write Q+ as 

0 1 qo 

(4.1) 

]-.-- + 
= - ~/~t0,~ . (4.4) 

q" 00" 

and the algebra (2.12) reduces to 

{q " ,  ~t,} = - x / 2 6 ' ~ p  + , (4.2) 

exhibiting a manifest SU(4) covariance. 
As is conventionally done we represent this algebra on a Grassmann parameter 

0 "  with its complex conjugate 0,. as follows: 

m ~ , / 5  q = -  - + iO"O + ,  (4.3) 
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A general superfield will now be a function of 0 m and O,. However,  such a superfield 
will not be an irreducible representation of the algebra (4.2). In fact we can also 
construct covariant derivatives d "  and a ,  

d m _ 0 ,/rio,.o+ (4.5) o~,. 

(~ / T  - 4- 3,  = ~ + VsiO, O , (4.6) 

which anticommute with q " and ~,. 
This means that we can impose a "chirality" condition on a general superfield 

d '&  = 0.  (4.7) 

In the case of SU(4) one can impose a further constraint 

d ' d " ~  = ½e""Pq~oaq&. (4.8) 

A scalar superfield satisfying (4.7) and (4.8) can now be written as 

1 i m 
4~(x, e )=~-zA(y)+~-~6 £m(y)+~/~i0man(~m~(y) 

1 - -  m n p q + ~ / 2 0  0 0 e , . . p q X  (y)+  1 m n p q + - i70 0 0 0 e,,,vqa A ( y ) ,  (4.9) 

-- + - T .  r r l ~  
with y = (x, x, x , x -~@0 0,,), where the overall factor (0+)-~ has been inserted 
for convenience. Note that this superfield contains only component  felds of canoni- 
cal dimension. This is automatic in the construction due to the supersymmetry 
algebra. Fur thermore  we see that the expansion in 0 also means an expansion in 
the different helicity components  starting with + 1 for A (x) decreasing by for each 
power of 0. 

It is now straightforward but tedious to rewrite the action (3.13) in terms of this 
superfield. The result is 

S = 7 2  I d4xd4Od4ff{-~ao~---g-y&a 

+ 4gf~bc ( ~  ~b %b b'sck C +complex  conjugate)  

/ 1  4~) 1 
\ l  

__ g2fabcfade ~_~ (q~bc3+ "~ ((~do+(~e) .qt_ lckb4~cod~e) l ' ( 4 . 1 0 )  

where d40 is normalized so that ~ d40 04 = 1. 

This action was obtained by a direct comparison with (3.13). Just considering 
the action (4.10) the different terms look quite arbitrary. Each term is obviously 
invariant under restricted supersymmetry. However,  although this action is not 
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Lorentz  invariant, the resulting equations of motion should be and this restricts 
the possible terms in the action. Thus Lorentz  invariance still governs the form of 
the action. By properly deriving the equations of motion f rom the action (4.10) 

and properly defining the Lorentz  t ransformation on 4~ one can in principle check 
the Lorentz  invariance of the theory. 

Light-cone supersymmetry  and superfields have already been discussed by Siegel 
and Gates  [12]. They treated the N = 1 Wess -Zumino  and N = 1 Yang-Mills 
theories and showed how to write the free actions only in terms of light-cone 

superfields. They also gave a general procedure for obtaining these superfields from 
the usual superspace. 

In a for thcoming paper  we will derive the Feynman rules for the superfield 4~. 
Although this superfield is constrained, functional differentiations with respect to 
it can be consistently defined. Hence  we have found a formalism where both the 
SU(4) invariance and the restricted supersymmetry  are manifest  and we believe 
this will simplify quantum calculations to the extent that the question of finiteness 
can be resolved. 

5. On the light-cone formulation of other supersymmetric theories 

We have shown so far that the N = 4 Yang-Mills  field can be described in terms 
of a scalar superfield. It  is easily seen that the same is true for all supersymmetr ic  
Yang-Mills  theories. For each N we use a 0 m in the N-  dimensional representation. 
For all N ' s  but N = 4 the superfield is chiral but otherwise unconstrained. E.g. for 

N = 1 the superfield is (y = (x, Y~, x +, x -  - ~i00)) 

,b(x, 0 ) = A ( y ) + i O ~ ( y ) ,  (5.1) 

4~(x, 0) = :~(y) + i0X (Y) • (5.2) 

It  is straightforward to rewrite the light-cone action for this theory in terms of this 
superfield. 

The N = 3 and N -- 4 theories have the same particle content. Hence  they will 
be equivalent in the light-cone formulation and we have a choice which superfield 
to use. If we use the N = 3  formulation we have the advantage of using an 
unconstrained chiral superfield, but lose the explicit SU(4) invariance. Since, 
however,  the variation with respect to N = 4 superfield is fairly simple to perform 
although it is constrained we feel that this formalism is the more  advantageous one 
and we will use it in the sequel. 

The light-cone formalism should also be applicable to supergravity theories. 
Since both the spin-2 and the spin-1 particles have two helicity states they can be 

• 1 
described by complex scalar fields. Similarly the spin-} and spln-~ particles each 
have two helicity states and can be described by scalar complex Grassmann fields. 
Only the spin-0 fields represent  one degree of f reedom and hence must have extra 
constraints. This is most  easily achieved by having those fields just in the middle 
of a chiral superfield so that they can be made to satisfy a duality constraint as in 
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the N = 4  Yang-Mills theory. Hence the N = 8 supergravity fields can all be 
contained in a scalar chiral superfield with a 0 "  transforming as an 8 under SU(8). 
We write it as 

i . I  1 - ~iOmO. I ,~,..(y) 
& ( X l O l = - ~ h ( y ) + i O  ~-~ 6. , (y)  +~ O= 

1 m . ~ 1 1 . ,  . p q -  
3! O O O ~7~m.o(y)-~.10 O O 8 Cm.po(y) 

+ ~ 0 mO"O PO"O'E,..,q,s,,,X ~" (y) 
5Z 

l m n p q • s + t u  
+-~. 0 0 8 O O O e,,,,pq~,~O A (y) 

r n  n P 0 r s t + U + ~ o  o o o o o 0Em.~r. .0 ¢, (y) 

i r n  n p q • s t u + 2 - -  
+~. .O 8 O O 8 8 O 8 e,..pq,.s,,,c9 h(y ) ,  (5.3) 

with y = (x, 2, x +, x - - ½iO "i f , ,  ). 

The field components  represent the different helicity components of N = 8 
supergravity starting with helicity 2 for h ( x )  and the general field component  has 
helicity 2 - ~ n  where n is the number of O's multiplying the field component  in the 
expansion. The fact that this superfield also satisfies a duality constraint such as 
(4.8) is characteristic of theories with maximal supersymmetry and gives rise to 
the typical mirror structure of the superfield. It is most likely that this constraint 
is the property responsible for the unique quantum behaviour that these theories 
seem to exhibit. 

The N = 8 supergravity is a great challenge to construct in this framework. Since 
this theory contains non-polynomial interactions one must develop suitable tech- 
niques to construct actions in superspace. Furthermore the Lorentz invariance will 
be more difficult to recover for this model, since a great number of field components 
will have to be integrated out. However,  once these problems have been solved, 

we believe this is an adequate formalism to analyze the question whether N = 8 
supergravity is a finite quantum theory or not. 

A p p e n d i x  

NOTATIONS AND CONVENTIONS 

We use a space-like metric for which 

A " B .  = A i B i  + A L B L - A o B o  

= A i B i  - A +B - A _ B  + , (A.1) 
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where i labels t ransverse  direct ions  and  L and  0 the longi tud ina l  and  t ime directions,  

respectively.  The  l ight-cone coordina tes  are given by 

:t: T 0 3 
x =x/~(x + x  ) .  (A.2) 

We  use the Dirac  a lgebra (note the minus  sign) 

{V", y~} = - 2 n  "v. (A.3) 

We  write explicitly the gauge group indices which are small  let ters in the beg inn ing  

of the a lphabet ,  a, b, c . . . .  

For  the in te rna l  SU(4) invar iance  we use indices which are small  let ters s tar t ing 

f rom m in the alphabet .  Complex  con juga t ion  raises and  lowers indices and  the 

complex con juga te  is deno t ed  by a bar. 

Spinor  indices are deno ted  by small  Greek  letters t aken  f rom the beg inn ing  of 

the a lphabet .  A M a j o r a n a  spinor  is def ined by 

7t~C~ = A/3, A = A +3, 0 , (A.4) 

where  C is the charge con juga t ion  matrix,  whereas  a (ant i - )Weyl  spinor  satisfies 

11 /3 (v)~x~ =(-),~. (A.5) 

The  3 '-matrices are always def ined to be proper ly  Weyl -pro jec ted .  
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