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Abstract

Historically quantum mechanics began with two quite different mathematical formulations: the
wave equation of Schrödinger, and the matrix algebra of Heisenberg, Born and Jordan. While
these approaches are well suited to the time-independent non-relativistic bound state problems of
atomic and molecular physics, many problems in condensed matter, statistical and particle physics
are better suited to a more intuitive formulation of quantum mechanics based on the ideas of
Dirac and Feynman, namely the the path integral or “sum over histories” approach. In this course
we begin with a review of the fundamental ideas of quantum mechanics, the path integral for a
non-relativistic point particle is introduced and used to derive time-dependent perturbation theory
and the Born series for nonrelativistic scattering. The course concludes with an introduction to
relativistic quantum mechanics and the ideas of quantum field theory.



Preamble: Formulations of Quantum Mechanics

Quantum Mechanics started with two ostensibly-different formulations, both based on the Hamil-
tonian:

(1925) Heisenberg, Born and Jordan: “Matrix Mechanics”

(1925) Schrödinger: “Wave Mechanics”

These were shown to be equivalent by Schrödinger in 1926, and thereafter unified into a more general
formulation by Dirac’s “Transformation Theory.”

Wave Mechanics and Matrix Mechanics are well-suited to the study of non-relativistic bound states
and other time-independent systems, and also to scattering and time-dependent problems.

(1942) Feynman: “Path Integral” or “Sum over Histories”

Feynman’s formulation is based on the Lagrangian and is ideal for scattering and time-dependent
problems, and (especially) for relativistic and many-particle systems. (Unfortunately, bound-state
problems are generally harder to solve using path integrals.)

Structure of the course:

(1) Elements of Quantum Mechanics;

(2) Path integrals for single particles;

(3) Perturbation Theory and Scattering;

(4) Relativistic Quantum Theory – wave mechanics, field theory.
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1. Quantum Kinematics
We begin by revisiting one of the classic experiments that led to quantum theory. The setup of the
two-slit experiment is summarised in the diagram.

Particles (electrons, photons, . . .) are fired from a source towards a screen or “grating” which
contains two slits, 1 and 2. They are then detected, or “observed”, on a second screen.

The classical expectation is a count profile P1 + P2, which is the sum of the count profiles P1 and
P2 for the individual slits (red and blue curves).

However, the observed interference pattern in the count profile P12 of particles (purple curve) suggests
that such particles behave like waves, so we must add amplitudes (which are called φ1 and φ2 in the
figure); the number of particles (intensity) at any point is given by |∑ amplitude|2. Interference
means that we observe no particles at all in some places - entirely contrary to classical expectation!
Furthermore, there is no way to predict where any given particle will be detected - we deal only
in probabilities. The results of this experiment (and many, many more!) are encoded in the basic
axioms of Quantum Mechanics.

1.1. Fundamental Principles

States and linearity: In quantum mechanics, every possible physical state of a given system is
in one-to-one correspondence with a one-dimensional subspace of a complex linear vector space, H,
with a complex inner product - this is called a Hilbert space.

So, if |ψ〉 ∈ H, the physical state corresponds to all vectors c |ψ〉 with c ∈ C \ {0}. There is no
physical state corresponding to zero.

Since the vector space is linear, given two states |ψ1〉 , |ψ2〉 ∈ H, we can construct a third state

|ψ3〉 = c1 |ψ1〉 + c2 |ψ2〉 ∈ H, with c1, c2 ∈ C. (1.1)

This is called linear superposition of states.

Dual space: To every |ψ〉 ∈ H we associate a dual or adjoint vector 〈ψ| ∈ H⋆. The duality is
antilinear:

〈ψ3| = c∗1 〈ψ1| + c∗2 〈ψ2|

We then have an inner product mapping H⊗H⋆ → C. If |ψ〉 ∈ H and 〈φ| ∈ H⋆, then

〈φ ψ〉 = 〈ψ φ〉∗ ∈ C. (1.2)

(This is like the usual dot-product a · b for real vectors a, b, but the result is in general complex.)

Since |ψ〉 and c |ψ〉 correspond to the same physical state, we usually normalise |ψ〉 to unity: we
choose:

‖ |ψ〉 ‖2 = 〈ψ ψ〉 = 1. (1.3)

This fixes |c|2 = 1, so c = eiα. The phase α is often ignored: we say “the system is in the state |ψ〉”.



Example: In the two-slit experiment, the Hilbert space has two states:

|1〉 (the particle goes through slit 1)

|2〉 (the particle goes through slit 2)

The state observed in the detector will in general be some linear combination of these:

|f〉 = c1 |1〉 + c2 |2〉

There are many examples of two-state systems in nature: electron spin, double-well potential,
neutral-kaon mixing, . . .

Probability: the probability that a system observed initially in state |ψ〉 will be observed finally
in state |φ〉 is

P (ψ → φ) = | 〈φ ψ〉 |2 (1.4)

The complex numbers 〈φ ψ〉 are called probability amplitudes because they add and multiply just
like classical probabilities:

• The amplitude for ψ → φ and then φ→ χ is 〈χ φ〉 〈φ ψ〉.
• The amplitude for ψ → φ or ψ → χ is 〈φ ψ〉 + 〈χ ψ〉;
This means that:

P (ψ → φ→ χ) = P (ψ → φ)P (φ→ χ)

but
P (ψ → φ or χ) 6= P (ψ → φ) + P (ψ → χ)

because
| 〈φ ψ〉 + 〈χ ψ〉 |2 = | 〈φ ψ〉 |2 + | 〈χ ψ〉 |2 + 2Re 〈φ ψ〉∗ 〈χ ψ〉

The last term is the interference term. In particular, P (ψ → φ or χ) can be zero even if P (ψ → φ)
and P (ψ → χ) are both non-zero.

An excellent example is the two slit experiment. A theorist’s sketch of the experimental setup of
this experiment is shown in figure 1.1. The probability amplitude for a particle (electron) initially
in the state |i〉 (at the source) to be detected in the final state |f〉 (on the second screen) is:

|i〉 (source) grating |f〉 (screen)

|1〉

|2〉

Figure 1.1: Two slit experiment

〈f i〉 = 〈f 1〉 〈1 i〉+ 〈f 2〉 〈2 i〉

The first (second) term is the amplitude for the
path through slit 1 (2). For the probability, we
have:

P (i→ f) = | 〈f i〉 |2

= | 〈f 1〉 〈1 i〉+ 〈f 2〉 〈2 i〉 |2

6= | 〈f 1〉 〈1 i〉 |2 + | 〈f 2〉 〈2 i〉 |2

Question: Why?

Answer: The probability P (i → f) 6= P (i → f via 1) + P (i → f via 2) because P (i → f) can
vanish if amplitudes for the different paths cancel.

Question: For a given i→ f , which way does the electron go? Through slit 1 or slit 2?

Answer: We don’t know – if we don’t look. . .

If we do look, this changes the experiment – if we find the particle goes through slit 1, then

P (i→ f) → P (i→ f via 1) = | 〈f 1〉 〈1 i〉 |2

and there is no interference.

In quantum mechanics, electrons can go through slit 1, or slit 2, or “both” - provided that we don’t
check!



1.2. Basis states

Within our assumption for the space of states to be a Hilbert space we implicitly assumed the linear
space to be complete. This means that there exists a set of basis states |n〉 (assumed for the moment
to be countable) such that for any |ψ〉 ∈ H:

|ψ〉 =
∑

n

ψn |n〉 (1.5)

for some complex numbers ψn (the components of |ψ〉). The basis vectors may be chosen to be
orthonormal:

〈m n〉 = δmn. (1.6)

Then the following equation holds:

〈m ψ〉 =
∑

n

ψn 〈m n〉 = ψm. (1.7)

So ψm is the probability amplitude for |ψ〉 to go to |m〉, and we have

|ψ〉 =
∑

n

|n〉 〈n ψ〉 (1.8)

Since this is true for all |ψ〉 ∈ H, we often write

∑

n

|n〉 〈n| = 1̂ (1.9)

where 1̂ is the unit or identity operator. This is an extremely useful result and we shall use it many,
many times in what follows.

Equation (1.9) expresses the completeness of the basis states: at any moment a state must be in some
linear superposition of them. Note that completeness is necessary for the probability interpretation
to work:

1 = 〈ψ ψ〉 =
∑

n

〈ψ n〉 〈n ψ〉 =
∑

n

| 〈n ψ〉 |2 =
∑

n

P (ψ → n) (1.10)

Example: In the two-slit experiment we have a two-component basis, we can represent the states
|1〉 and |2〉 as

|1〉 →
(

1
0

)

and |2〉 →
(

0
1

)

,

and
〈f i〉 =

∑

n=1,2

〈f n〉 〈n i〉

simply expresses the fact that the electron must follow a path through either slit-1 or slit-2. However,
the states |i〉 and |f〉 will in general be linear superpositions of |1〉 and |2〉.

1.3. Operators and Observables

Consider an observable which takes real values ξn in basis states |n〉. Then we can construct an
operator:

ξ̂ ≡
∑

n

ξn |n〉 〈n| (1.11)

corresponding to the observable. Equation (1.11) is called the spectral representation of the operator.

It is easy to see that:

(a) ξ̂ is a linear operator: ξ̂(c1 |ψ1〉 + c2 |ψ2〉) = c1ξ̂ |ψ1〉 + c2ξ̂ |ψ2〉
(b) ξ̂ is hermitian:

〈ψ| ξ̂ |φ〉 =
∑

n

ξn 〈ψ n〉 〈n φ〉 =

(
∑

n

ξn 〈φ n〉 〈n ψ〉
)∗

(because ξ∗n = ξn)

= 〈φ| ξ̂ |ψ〉∗ = 〈ψ| ξ̂† |φ〉 (by definition)



More succinctly, we may write simply: ξ̂† = ξ̂.

(c) |n〉 are eigenstates of ξ̂, with eigenvalues ξn:

ξ̂ |n〉 =
∑

m

ξm |m〉 〈m n〉 = ξn |n〉 (1.12)

(d) if we have a second observable which takes values ζn on |n〉, then ξ̂ and ζ̂ commute:

ξ̂ζ̂ |n〉 = ξnζn |n〉 = ζnξn |n〉 = ζ̂ ξ̂ |n〉 ∀n, so [ξ̂, ζ̂] = 0.

Measurement: When we make a measurement, the state |ψ〉 of the system just before the mea-

surement collapses into some eigenstate |n〉 of ξ̂: the probability that we measure ξn is | 〈n ψ〉 |2.
The average result over many measurements is thus:

ξ =
∑

n

ξn| 〈n ψ〉 |2 =
∑

n

ξn 〈ψ n〉 〈n ψ〉

= 〈ψ| ξ̂ |ψ〉
(1.13)

which is often called the expectation value of ξ̂ in the state |ψ〉. We can think of the measurement
process as projecting |ψ〉 onto |n〉:

P̂n = |n〉 〈n|
is the appropriate projection operator, with properties P̂ 2

n = P̂n and
∑

n P̂n = 1̂.

When we make a measurement the state changes:

|ψ〉 7→ P̂n |ψ〉 = |n〉 〈n ψ〉

with a probability:
‖P̂n |ψ〉 ‖2 = 〈ψ n〉 〈n n〉 〈n ψ〉 = | 〈n ψ〉 |2.

Degeneracy: Often a given operator ξ̂ will have degeneracies:

ξ̂ |n,m〉 = ξn |n,m〉

for all m ∈Mn where Mn is a certain set. Measuring ξn then projects onto a degenerate subspace:

|ψ〉 7→ P̂n |ψ〉 =
∑

m

|n,m〉 〈n,m ψ〉 .

To project onto a definite eigenstate requires that we measure further observables which commute
with ξ̂. This leads to the notion of a maximally commuting set of observables. (The basis states
may often be organised into irreducible representations of discrete or continuous symmetries of the
system: the observables then correspond to generators of these symmetries – see Symmetries of

Quantum Mechanics.)

1.4. Change of basis

Consider a change of basis {|n〉} 7→ {|n̄〉}. Expressing the new basis states in terms of the old ones
gives:

|n̄〉 =
∑

m

|m〉 〈m n̄〉 ≡
∑

m

|m〉Umn (1.14)

Orthonormality then implies that

δnn′ = 〈n̄ n̄′〉 =
∑

m,m′

〈n̄ m〉 〈m m′〉 〈m′ n̄′〉 =
∑

m,m′

〈n̄ m〉 δmm′ 〈m′ n̄′〉

=
∑

m

U †
nmUmn′ (where U †

nm ≡ U∗
mn)

So Umn is the mn element of a unitary matrix. In operator notation we define

|n̄〉 ≡ Û |n〉 which gives Umn = 〈m| Û |n〉

(brief exercise for the student). Clearly, Û is a unitary operator: Û †Û = 1̂. Note that unitary
operators are not in general observables because they don’t have real eigenvalues.



1.5. Space as a continuum – position and wavenumber

Consider again the two slit experiment shown in figure 1.1, and let us generalise to an n-slit experi-
ment. if we let n→ ∞, we will need a continuous label x. We get the usual transition from discrete
to continuous variables

|n〉 7→ |x〉 ;
∑

n

7→
∫

dx ; δnm 7→ δ(x− x′).

The component of |ψ〉 in the basis |x〉 is now a function of the continuous variable x, let’s call it
ψ(x). We have

|ψ〉 =

b∫

a

ψ(x) |x〉 dx

If we normalise our states so that
〈x′ x〉 = δ(x− x′)

then

〈x′ ψ〉 =

b∫

a

ψ(x) 〈x′ x〉 dx = ψ(x′)

so
ψ(x) = 〈x ψ〉 and ψ∗(x) = 〈ψ x〉 .

We may write

|ψ〉 =

b∫

a

dx |x〉 〈x ψ〉 and thus 1̂ =

b∫

a

dx |x〉 〈x| (1.15)

which is the completeness relation (the particle must be somewhere).

Squares of probability amplitudes are now interpreted as probability densities:

1 = 〈ψ ψ〉 =

b∫

a

dx 〈ψ x〉 〈x ψ〉 =

b∫

a

dx ψ∗(x)ψ(x),

so |ψ|2 dx is the probability that the particle is between x and x+ dx. Therefore ψ(x) is the usual
(time-independent) wavefunction of wave mechanics.

In the continuous version of (1.11) we may define the position operator as

x̂ =

b∫

a

dx x |x〉 〈x| (1.16)

and verify that

x̂ |x〉 =

b∫

a

dx′ x′ |x′〉 〈x′ x〉 =

b∫

a

dx′ x′ |x′〉 δ(x′ − x) = x |x〉 .

From equation (1.16), the expectation value of x in the state |ψ〉 is

〈ψ| x̂ |ψ〉 =

b∫

a

dx 〈ψ x〉x 〈x ψ〉 =

b∫

a

dx ψ∗(x)xψ(x) (1.17)

There is of course no need to restrict ourselves to a finite interval (a, b). We can let a → −∞ and
b → ∞ and take x ∈ (−∞,∞). Furthermore we do not have to stay in the position basis. For
example consider the Fourier transform basis:

|k〉 =

∞∫

−∞

dx√
2π

e+ikx |x〉 =

∞∫

−∞

dx |x〉 〈x k〉 , (1.18)



from which we may read off:

〈x k〉 =
1√
2π

eikx ; 〈k x〉 =
1√
2π

e−ikx. (1.19)

Then we obtain the following relation:

〈k′ k〉 =

∞∫

−∞

dx 〈k′ x〉 〈x k〉 =

∞∫

−∞

dx

2π
ei(−k′+k)x = δ(k′ − k), (1.20)

so the transformation is unitary. We can construct a hermitian operator k̂ such that:

k̂ =

∫

dk k |k〉 〈k| ⇒ k̂ |k〉 = k |k〉 .

It follows that

k̂ |x〉 =

∫

dk k |k〉 〈k x〉 = i ∂
∂x

∫

dk |k〉 〈k x〉

= i ∂
∂x

|x〉 .
(1.21)

where we used (1.19) which implies

k 〈k x〉 = i ∂
∂x

(
1√
2π

e−ikx

)

,

to obtain the last expression on the first line of (1.21).

An immediate consequence of (1.21) is 〈ψ| k̂ |x〉 = i ∂
∂x 〈ψ x〉 . Taking the complex conjugate and

recalling that k̂ is hermitian gives

〈x| k̂ |ψ〉 = −i ∂
∂x
ψ(x). (1.22)

Finally

〈φ| k̂ |ψ〉 =

∫

dx 〈φ x〉 〈x| k̂ |ψ〉 =

∫

dxφ∗(x)

(

−i ∂
∂x

)

ψ(x)

which should look familiar from wave mechanics.

Similarly, if we define

ψ̃(k) = 〈k ψ〉 =

∫

dx 〈k x〉 〈x ψ〉 =

∫
dx√
2π

e−ikxψ(x) (1.23)

we easily find
〈k| k̂ |ψ〉 = kψ̃(k), (1.24)

while (exercise)

〈k| x̂ |ψ〉 = i ∂
∂k
ψ̃(k). (1.25)

and hence

〈φ| x̂ |ψ〉 =

∫

dk 〈φ k〉 〈k| x̂ |ψ〉 =

∫

dk φ̃∗(k)

(i ∂
∂k

)

ψ̃(k) .

A summary is given in table 1.1. In either basis we get the commutator:

basis x̂ k̂

position x −i ∂
∂x

wavenumber i ∂
∂k k

Table 1.1: Operators in different
bases

[

x̂, k̂
]

= i (1.26)

This tells us that the two operators do not correspond to si-
multaneous observables (as expected). The uncertainty prin-
ciple can be deduced:

∆x∆k ≥ 1

2
. (1.27)

Later we will show that momentum p = h̄k. All of the above can easily generalised to 3 space
dimensions:

ψ̃(k) = 〈k ψ〉 =

∫

d3x 〈k x〉 〈x ψ〉 =

∫
d3x

(2π)3/2
e−ik·x ψ(x)



1.6. Time as a continuum

|i〉 (source) gratings |f〉 (screen)

Figure 1.2: Sketch of the slit experiment
with more gratings

We now add more gratings to the slit experiment.
Let the nth grating be passed at position xn at time
tn, and call this state |xn, tn〉. If we haveN gratings
the transition amplitude becomes

〈f i〉 =

∫

dx1 〈f x1, t1〉 〈x1, t1 i〉

=

∫

dx1

∫

dx2

〈f x2, t2〉 〈x2, t2 x1, t1〉 〈x1, t1 i〉

=

∫

dx1 · · ·
∫

dxN 〈f xN , tN 〉 · · · 〈x1, t1 i〉
(1.28)

By adding more and more gratings the time intervals get smaller and smaller and we fix the path
between |i〉 and |f〉 more and more precisely. But we also get more and more integrals in order to
integrate over all the paths!

For simplicity (and notational convenience) we take |i〉 = |xa, ta〉 and |f〉 = |xb, tb〉 and let

tn = ta + nε ; ε =
tb − ta
N + 1

, (1.29)

so that t0 = ta and tN+1 = tb. Then we obtain for the transition amplitude:

〈xb, tb xa, ta〉 =

(
N∏

n=1

∫

dxn

)(
N+1∏

n=1

〈xn, tn xn−1, tn−1〉
)

. (1.30)

The expression in the first pair of parentheses tells us to “integrate over all paths”, and the expression
in the second pair is the amplitude for each path.

For N → ∞ (i.e. ε→ 0) this becomes:

〈xb, tb xa, ta〉 =

xb∫

xa

Dx 〈xb, tb xa, ta〉
∣
∣
x(t)

(1.31)

where the path x(t) is such that x(ta) = xa and x(tb) = xb. So, to find the transition amplitude we
take the amplitude for each path x(t), and then integrate (‘sum’) over all paths between xa and xb.
This is easy to understand physically but much harder to understand mathematically!

In fact, the limit only exists if we take care to normalise each integral carefully (see later).

What is the amplitude for each path x(t)? Intuitively, for a path which is infinitesimal (tn = tn−1+ε):

〈xn, tn xn−1, tn−1〉 ∼ exp [iεφ(xn, xn−1, tn, tn−1)] , (1.32)

where φ is real. This is because:

(a) in the limit ε→ 0, the amplitude should be constant (continuity);

(b) the phase should depend only on xn, xn−1, tn, tn−1 (locality)

(c) The transition |xn−1, tn−1〉 7→ |xn, tn〉 is just a change of basis, so we expect (up to a constant)
| 〈xn, tn xn−1, tn−1〉 | ∼ 1, i.e. the amplitude is just a phase (unitarity).

Using (1.32) we can write the transition amplitude along the path x(t) as:

〈xb, tb xa, ta〉
∣
∣
x(t)

∼ lim
N→∞

N+1∏

n=1

eiεφ(xn,xn−1,tn,tn−1)

∼ exp

{i lim
N→∞

N+1∑

n=1

(tn − tn−1)φ(xn, xn−1, tn, tn−1)

}

∼ exp






i tb∫

ta

dt φ(x(t), ẋ(t), t)







(1.33)

To say more (about φ) we need to revise and develop some classical mechanics. . .



2. Quantum Dynamics

2.1. Classical Dynamics

In Lagrangian dynamics, the action for a path x(t) is

S[x(t)] =

tb∫

ta

L(x, ẋ, t) dt (2.1)

where L is the Lagrangian. For a non-relativistic point particle in a potential V in one dimension
this is:

L = T − V =
1

2
mẋ2 − V (x, t) (2.2)

Classical dynamics is based upon the principle of least action: the classical path x̄(t) is an extremum
of the functional S. Formally

δS

δx

∣
∣
∣
∣
x=x̄

= 0 (2.3)

where δS/δx is the functional derivative. For a small variation of the path: x(t) 7→ x(t) + δx(t):

δS = S[x+ δx] − S[x]

=

tb∫

ta

dt (L(x+ δx, ẋ+ δẋ, t) − L(x, ẋ, t))

=

tb∫

ta

dt

(
∂L

∂x
δx+

∂L

∂ẋ
δẋ

)

+ O(δx2)

=

[

δx
∂L

∂ẋ

]tb

ta

−
tb∫

ta

dt

(
d

dt

(
∂L

∂ẋ

)

− ∂L

∂x

)

δx+ O(δx2)

(2.4)

where, as usual, we integrated by parts in the last step. If the end-points of the path are fixed,
i.e. δx(ta) = δx(tb) = 0, then the first term in the last line of (2.4) vanishes, and we obtain Lagrange’s
equation for the classical path

d

dt

(
∂L

∂ẋ

)

− ∂L

∂x
= 0. (2.5)

Consider now the value of the action S on the classical path: Scl = S[x̄(t)]. Scl will be a function
of the end points, i.e. of xa, ta, xb, and tb.

Let us now vary the endpoint (xb, tb) 7→ (xb, tb) + (δxb, δtb), but keep (xa, ta) fixed. Lagrange’s
equation (2.5) holds for the classical path so, from (2.4), we get (for δtb = 0)

δScl =

[

δx
∂L

∂ẋ

]tb

ta

=
[
δx p

]tb

ta
= δxb p(tb) − δxa p(ta) = p(tb) δxb

Hence
∂Scl

∂xb
= pb (2.6)

where we used the usual definition of the canonical momentum p conjugate to x: ∂L
∂ẋ .

Now consider dScl

dtb
. From (2.1) we get:

dScl

dtb
= L(xb, ẋb, tb) =

∂Scl

∂tb
+
∂Scl

∂xb
ẋb

This gives
∂Scl

∂tb
= L− pbẋb = −Eb ⇒ Eb = −∂Scl

∂tb
(2.7)

where Eb is the energy (or, more precisely, the Energy Function or Hamiltonian) at b.

Equations (2.6) and (2.7) are known as the Hamilton-Jacobi equations.



Example 1: The free particle. The Lagrangian and Lagrange’s equation of motion (EoM) are

L =
1

2
mẋ2 ⇒ ¨̄x = 0

Integrating twice, and imposing the boundary conditions x̄(ta) = xa and x̄(tb) = xb, the solution is
(exercise):

˙̄x = v =
xb − xa

tb − ta
, x̄ = xa + v(t− ta)

where v is the (constant) velocity of the particle. The classical action is

Scl = S[x̄] =

∫ tb

ta

1

2
m ˙̄x

2
dt =

1

2
mv2(tb − ta) =

1

2
m

(xb − xa)2

(tb − ta)
,

and, using the Hamilton-Jacobi equations, we get

pb =
∂Scl

∂xb
= mv and Eb = −∂Scl

∂tb
=

1

2
mv2 as expected (exercise).

Example 2: The simple harmonic oscillator. The Lagrangian and Lagrange EoM are

L =
1

2
m
(
ẋ2 − ω2x2

)
⇒ ¨̄x+ ω2x̄ = 0

The solution which satisfies the boundary conditions x̄(ta) = xa and x̄(tb) = xb, with T ≡ tb − ta, is

x̄(t) = xb
sinω(t− ta)

sinωT
+ xa

sinω(tb − t)

sinωT

This is important - check it carefully! Then we have, using integration by parts and the fact that
x̄(t) satisfies the classical equation of motion, to simplify the calculation,

S[x̄] =

∫ tb

ta

m

2

(

˙̄x
2 − ω2x̄2

)

dt = −m
2

∫ tb

ta

x̄
(
¨̄x+ ω2x̄

)
dt+

m

2
[x̄ ˙̄x]

tb

ta
= 0 +

m

2
[x̄ ˙̄x]

tb

ta

=
mω

2 sinωT

((
x2

a + x2
b

)
cosωT − 2xaxb

)

You should verify this very important result, and use the Hamilton-Jacobi equations to check that

pb = m ˙̄x
∣
∣
t=tb

and Eb =
m

2

(

˙̄x
2

+ ω2x̄2
) ∣
∣
t=tb

.

2.2. The Amplitude for a Path

We saw already in (1.33) that we expect the amplitude to be:

〈xb, tb xa, ta〉
∣
∣
x(t)

∼ exp






i tb∫

ta

dt φ(x, ẋ, t)






. (2.8)

Furthermore, we expect some sort of classical ↔ quantum correspondence, and we want the classical
limit to be included in the quantum description. Classically, we have:

S[x(t)] =

tb∫

ta

dt L(x, ẋ, t) (2.9)

So we guess that φ ∝ L. Now we need to fix up the units: we have [S] = [t][E] = [x][p]. So if we
introduce a dimensionful constant h̄, with units [S] (action), then we can take

∫
φ dt = S/h̄, i.e. we

assume:
〈xb, tb xa, ta〉

∣
∣
x(t)

= eiS[x(t)]/h̄. (Dirac) (2.10)

Equation (2.10) is our basic dynamical assumption, just as Schrödinger’s wave mechanics assumes
the Schrödinger equation to be the equation of motion for quantum systems. The overall (as yet
undetermined) normalisation constant will be (implicitly) absorbed into Dx. Note:

(1) If S → S + c (where c is a constant), all amplitudes change by eic/h̄, so physics is unchanged.

(2) If δS ∼ O(2πh̄) ∼ O(h), the phase changes by O(1), this sets the size of quantum fluctuations.



2.3. The Feynman Path Integral

With the assumption (2.10) the transition amplitude becomes:

〈xb, tb xa, ta〉 =

xb∫

xa

Dx

︸ ︷︷ ︸

sum over all paths

suitably normalised

eiS[x(t)]/h̄
︸ ︷︷ ︸

amplitude for

each path

(2.11)

Though the notation in (2.11) is very neat, to do calculations we will have to use the limiting
procedure as given above in (1.33):

xb∫

xa

Dx = lim
N→∞

AN

N∏

n=1

∫ ∞

−∞

dxn

where AN = (ν(ε))N+1, i.e. a factor ν(t) for each discrete interval.

ta

tc

tb

Figure 2.1: Split one
path in two

Note also the fundamental property: if we split the path in two, as
shown pictorially in figure 2.1, we get

〈xb, tb xa, ta〉 =

∫

dxc

xb∫

xc

Dx
xc∫

xa

Dx exp







ī
h





tb∫

tc

L dt+

tc∫

ta

L dt











=

∫

dxc 〈xb, tb xc, tc〉 〈xc, tc xa, ta〉

as required. This may be used to fix the normalisation ν(t) (see below.)

2.4. The classical limit (heuristic)

For quantum situations, tb & ta, and xb & xa are “close”, S[x(t)] = O(h̄), and the phases are of
order O(1).

For classical situations, tb, ta, xb and xa are “far apart” and S[x(t)] ≫ h̄ in general. (Formally, the
classical limit is obtained by taking h̄ → 0.) Now consider paths “very close” to a given path x(t).
Even though δx is small, δS will in general be large compared with h̄, because S is so large. So
eiδS/h̄ = cos(δS/h̄) + i sin(δS/h̄) will oscillate violently and contributions from nearby paths will
cancel. However, the classical path x̄(t) is special: δS is of order O(δx2), so nearby paths can add
constructively. So, as h̄ → 0 the classical path gives the dominant contribution (i.e. we derive the
principle of least action and hence classical mechanics) and therefore

〈xb, tb xa, ta〉 ∼ eiScl/h̄ (‘semiclassical approximation′)

2.5. Momentum and Energy

Let us try to make the statements for the phase changes in the previous section a bit more rigorous.
As we have seen, in classical situations Scl ≫ h̄ and the amplitude oscillates very rapidly. To see
just how rapidly, consider a small change in the endpoint: xb → xb + δxb, keeping tb fixed. Then:

Scl → Scl +
∂Scl

∂xb
δxb.

So the change in phase is δxbkb, where the wavenumber

kb ≡ 1

h̄

∂Scl

∂xb
=
pb

h̄
(by Hamilton−Jacobi.) (2.12)

Here, pb is the classical momentum at the endpoint (cf. (2.6)). So p = h̄k, or in operator language

p̂ = h̄k̂, and thus from (1.26):
[x̂, p̂] = ih̄. (2.13)

Similarly, if we change the time at the endpoint and keep xb fixed, i.e. tb → tb + δtb, we get

Scl → Scl +
∂Scl

∂tb
δtb.

The change in phase is now −δtbωb, where the frequency is (cf. (2.7)):

ωb ≡ − 1

h̄

∂Scl

∂tb
=
Eb

h̄
(by Hamilton−Jacobi) (2.14)

and we have E = h̄ω.



2.6. The Free Particle

Let us evaluate the path integral explicitly for a free particle. The “continuum” expression for the
Feynman path integral in (2.11) is elegant and succinct but we shall shall evaluate it here using
a limiting procedure. We shall make use of a range of Gaussian integrals – see separate handout.
We use the following discrete approximation to the free particle Lagrangian L = T = 1/2mẋ2 ≈
1/2m((xn − xn−1)/ε)

2, so that

〈xb, tb xa, ta〉 = lim
N→∞

AN

(
N∏

n=1

∫

dxn

)

exp

{ iε
h̄

m

2

N+1∑

n=1

(
xn − xn−1

ε

)2
}

(2.15)

where AN is a normalisation constant to be fixed. In (2.15) we have a sequence of nested Gaussian
integrals. Doing these integrals is straightforward but tedious. Each of the integrals is of the form

I =

∞∫

−∞

ei(x−u)2/aei(u−y)2/b du

=

∞∫

−∞

exp

{i(1

a
+

1

b

)

u2 − 2i(x
a

+
y

b

)

u+ i(x2

a
+
y2

b

)}

du

=

∞∫

−∞

exp

{i(1

a
+

1

b

)(

u− x/a+ y/b

1/a+ 1/b

)2
}

exp

{

−i (x/a+ y/b)2

1/a+ 1/b
+ i(x2

a
+
y2

b

)}

du

(2.16)

where we completed the square in the second line. For brevity, we make the following substitutions:

α ≡ −i(1

a
+

1

b

)

= −ia+ b

ab
; v ≡ u+

i
α

(x

a
+
y

b

)

(2.17)

and note that
(
x2

a
+
y2

b

)

− ab

a+ b

(x

a
+
y

b

)2

=
1

a+ b

[

x2 +
bx2

a
+ y2 +

ay2

b
− ab

(x

a
+
y

b

)2
]

=
1

a+ b

[

x2 +
bx2

a
+ y2 +

ay2

b
− 2yx− bx2

a
− ay2

b

]

=
(x − y)2

a+ b
.

(2.18)

We now plug (2.17) and (2.18) into (2.16) and use equation (1) (or (7)) from the sheet of Gaussian
integrals:

I =

∞∫

−∞

e−αv2

exp

{i (x − y)2

a+ b

}

dv =

√
π

α
exp

{i (x − y)2

a+ b

}

=

√i πab
a+ b

exp

{i (x − y)2

a+ b

}

.

(2.19)

We can now evaluate the integrals in (2.15) one at a time using (2.19), starting with the integral
over x1: ∫

dx1 exp
{i m

2εh̄

(

(x2 − x1)
2
+ (x1 − x0)

2
)}

This is of the form of (2.16) with a = b = 2εh̄/m, so ab/(a+ b) = εh̄/m and a+ b = 4εh̄/m. Hence

〈xb, tb xa, ta〉

= lim
N→∞

AN

(
N∏

n=1

∫

dxn

)(
N+1∏

n=1

exp
{i m

2εh̄
(xn − xn−1)

2
}
)

= lim
N→∞

AN

(
N∏

n=2

∫

dxn

)(
N+1∏

n=3

exp

{im(xn − xn−1)
2

2εh̄

})√ iπεh̄
m

exp

{im(x2 − x0)
2

4εh̄

}

= . . . = lim
N→∞

AN

( iπεh̄
m

)N
2

√

2 · 2N

2(N + 1)
exp

{im(xN+1 − x0)
2

2h̄(N + 1)ε

}

= lim
N→∞

AN

(
2πih̄ε
m

)N+1

2
√

m

2πih̄(N + 1)ε
exp

{im(xN+1 − x0)
2

2h̄(N + 1)ε

}

Exercise: check this explicitly (a slightly laborious exercise, but worth the effort.)



Since x0 = xa, xN+1 = xb, and (N + 1)ε = tb − ta ≡ T , if we choose

AN = (ν(ε))N+1 =
( m

2πih̄ε)N+1

2

, i.e. ν(ε) =

√
m

2πih̄ε
then, since the limit N → ∞ is trivial,

〈xb, tb xa, ta〉 =

√
m

2πih̄T exp

{im
2h̄

(xb − xa)2

T

}

≡ F0(T ) eiScl/h̄, (2.20)

since, as we showed above for the free particle,

Scl =
m

2
v2T =

m

2

(xb − xa)2

T
.

Note that our choice for ν(ε) renders the normalisation factor F0(T ) independent of xa and xb - see
below for discussion.

Notes:

(1) At large times (where Scl ≫ 1), letting x = xb + ∆x, t = tb + ∆t and expanding the exponent in a
Taylor series we find (exercise)

〈x, t xa, ta〉 ≃ 〈xb, tb xa, ta〉 e(i/h̄)(pb∆x−Eb∆t),

i.e. a plane wave with momentum pb and energy Eb = p2
b/2m, as expected.

(2) The free particle amplitude is a very useful object: we often call it the free-particle Green function

(see later), and write
G0(xb − xa, tb − ta) ≡ 〈xb, tb xa, ta〉 (2.21)

which makes explicit its translational invariance: G0 depends only on the difference between the
initial and final positions and times. In momentum space (exercise)

G̃0(p, t) ≡
∞∫

−∞

dx eixp/h̄G0(x, t) =

√
m

2πih̄t ∞∫

−∞

dx exp

{ ixp
h̄

+
imx2

2h̄t

}

= exp

(

−i p2t

2mh̄

)

= exp

(

−iEt
h̄

)
(2.22)

where E = p2/2m, i.e. a plane wave with classical energy E as expected.

(3) Normalisation: choosing ν(ε) =
√

m
2πih̄ε seems strange at first, since ν(t) → ∞ as ε → 0, so the

amplitude diverges for infinitesimal time intervals. This is not an accident: if the amplitude for
finite times is to be finite, then

lim
N→∞

(

ν(t)

√

2πih̄ε
m

)

must be finite, and we must choose ν(ε) =
√

m
2πih̄ε(1 + O(ε)), (so that the O(ε) term goes to zero

as ε → 0). Moreover, since 〈xb, tb xa, ta〉 is a Gaussian in (xb − xa) with width h̄(tb − ta)/m and
(with this normalisation) unit area, as tb → ta

〈xb, tb xa, ta〉 → δ(xb − xa) = 〈xb, ta xa, ta〉

as required.

Finally, it is easy to check that with this normalisation

〈xb, tb xa, ta〉 =

∫ ∞

−∞

dx 〈xb, tb x, t〉 〈x, t xa, ta〉 (2.23)

for any ta < t < tb (tutorial exercise).



(4) The result 〈xb, tb xa, ta〉 = F0(T ) eiScl/h̄ is also not accidental.

To see this, consider an alternative method of calculation: write x(t) = x̄(t)+η(t), where x̄(t) is the
classical path with boundary conditions x(ta) = xa and x(tb) = xb. Then η(ta) = η(tb) = 0, and
η(t) describes the ‘quantum fluctuations’ about the classical path. Furthermore, since δS

δx

∣
∣
x=x̄

= 0
there will be no terms linear in η in the action, and, since the Lagrangian is quadratic, we find
S[x] = S[x̄+ η] = S[x̄] + S[η]. Explicitly

S[x] = S[x̄+ η] =
m

2

tb∫

ta

( ˙̄x+ η̇)2 dt =
m

2







tb∫

ta

( ˙̄x
2
+ η̇2) dt+ 2

tb∫

ta

˙̄xη̇ dt







=
m

2







tb∫

ta

( ˙̄x
2

+ η̇2) dt+ 2
[
ηẋ
]tb

ta
− 2

tb∫

ta

η¨̄x dt







(2.24)

The last two terms vanish because η(ta) = η(tb) = 0, and ¨̄x = 0 by the equation of motion.

But S[x̄] = Scl, and
∫ xb

xa
Dx =

∫ 0

0
Dη (since x̄ is fixed, hence dxn = dηn ∀n), therefore

〈xb, tb xa, ta〉 = eiScl/h̄

0∫

0

Dη eiS[η]/h̄ ≡ F0(T ) eiScl/h̄, (2.25)

where T = tb − ta as before, and the path integral is over all paths η(t) with η(ta) = η(tb) = 0. The
normalisation factor is

F0(T ) = 〈0, tb 0, ta〉 = 〈0, T 0, 0〉 (2.26)

by translational invariance (in time). We can compute F0(T ) by evaluating the path integral over
η(t) explicitly (tutorial).

Alternatively, using (2.23)

〈0, T 0, 0〉 =

∫ ∞

−∞

dx 〈0, T x, t〉 〈x, t 0, 0〉

so F0(T ) =

∫ ∞

−∞

dxF0(T − t) exp

( imx2

2h̄(T − t)

)

F0(t) exp

( imx2

2h̄t

)

=

√

2πih̄(T − t)t

mT
F0(T − t)F0(t)

(2.27)

Now let T ≫ t so that (T − t) ≃ T and F0(T − t) ≃ F0(T ), and we find

F0(t) =

√
m

2πih̄t (2.28)

as required. Note that in this argument no discretisation of the path integral is required.

2.7. The Harmonic Oscillator

The Lagrangian is:

L =
m

2
ẋ2 − m

2
ω2x2. (2.29)

We use the same trick as for the free particle: write x = x̄+ η, then

S[x̄+ η] = S[x̄] + S[η] (2.30)

because the cross-term

∫ tb

ta

dt
(
˙̄xη̇ − ω2x̄η

)
= −

∫ tb

ta

dt η
(
¨̄x+ ω2x̄

)
+
[
η ˙̄x
]tb

ta
= 0 (2.31)

The first term on the RHS vanishes because x̄ satisfies the equation of motion, and the second
vanishes because η(tb) = η(ta) = 0. (This “trick” works for any Lagrangian quadratic in x.)



Again Dx = Dη, and hence
〈xb, tb xa, ta〉 = Fω(tb − ta)eiScl/h̄, (2.32)

where Scl is the classical action

Scl =
mω

2 sinωT

((
x2

a + x2
b

)
cosωT − 2xaxb

)
(2.33)

and the normalisation factor is

Fω(T ) =

0∫

0

Dη eiS[η]/h̄ = 〈0, T 0, 0〉 (2.34)

which is again independent of the boundary conditions. As before for the free particle the explicit
evaluation of the normalisation factor is tedious. It can be computed by expanding η(t) in a Fourier
series (see Feynman & Hibbs, 3.11), by matrix methods, or implicitly – using the same method as
for the free particle:

〈0, T 0, 0〉 =

∫ ∞

−∞

dx 〈0, T x, t〉 〈x, t 0, 0〉

so Fω(T ) =

∫ ∞

−∞

dxFω(T − t) exp

( imωx2

2h̄

cosω(T − t)

sinω(T − t)

)

Fω(t) exp

( imωx2

2h̄

cosωt

sinωt

)

= Fω(T − t)Fω(t)

√

2πih̄ sinω(T − t) sinωt

mω sinωT

(2.35)

As before, let T ≫ t so that Fω(T − t) ≃ Fω(T ), hence

Fω(T ) = Fω(T )Fω(t)

√

2πih̄ sinωT sinωt

mω sinωT
+ O(t/T )

hence Fω(t) =

√
mω

2πih̄ sinωt

(2.36)

Note that as ω → 0, Fω(t) → F0(t), as it must.

2.8. The Forced Harmonic Oscillator

Consider the forced harmonic oscillator with Lagrangian

L =
m

2
(ẋ2 − ω2x2) + Jx (2.37)

where the external force J(t) is non-zero but arbitrary for ta ≤ t ≤ tb. The equation of motion is
now

¨̄x+ ω2x̄ =
J

m
. (2.38)

The action depends on both x(t) and J(t), but since it is still quadratic we get

S[x̄+ η, J ] =
m

2

∫

dt ( ˙̄x+ η̇)2 − ω2(x̄+ η)2 +
2J

m
(x̄+ η)

= S[x̄, J ] + S[η, 0] +m

∫

dt

(

˙̄xη̇ − ω2ηx̄+
J

m
η

)

= S[x̄, J ] + S[η, 0] +m
[
˙̄xη
]tb

ta
−
∫

dt
[
η(¨̄x+ ω2x̄− (J/m))

]

= S[x̄, J ] + S[η, 0]

(2.39)

The fluctuation term S[η, 0] is independent of J because the coupling of J to x (and hence to η) is
linear. Thus

〈xb, tb xa, ta〉 = Fω(T ) eiScl/h̄ (2.40)

where now Scl = S[x̄, J ], and the normalisation factor is the same as for the unforced harmonic
oscillator.



2.9. Schrödinger’s Equation

To complete the picture, we derive the Schrödinger equation for a particle in an external potential:

L =
m

2
ẋ2 − V (x, t) . (2.41)

Recalling that momentum p = h̄k, we introduce the momentum basis following equations (1.18)
through (1.20):

|p〉 =

∞∫

−∞

dx√
2πh̄

e+ipx/h̄ |x〉 =

∞∫

−∞

dx |x〉 〈x p〉 , (2.42)

from which we may read off

〈x p〉 =
1√
2πh̄

eipx/h̄ ; 〈p x〉 =
1√
2πh̄

e−ipx/h̄ . (2.43)

The 1/
√

2πh̄ is to ensure that the states |p〉 are correctly normalised:

〈p′ p〉 =

∞∫

−∞

dx 〈p′ x〉 〈x p〉 =

∞∫

−∞

dx

2πh̄
ei(−p′+p)x/h̄ = δ(p′ − p) and 1̂ =

∞∫

−∞

dp |p〉 〈p| (2.44)

Now consider the infinitesimal amplitude

〈xn+1, tn+1 xn, tn〉 =

√
m

2πih̄ε exp

{ iε
h̄

[

m

2

(
xn+1 − xn

ε

)2

− V (xn, tn)

]}

=

√
m

2πih̄ε exp

{ im
2h̄ε

(xn+1 − xn)2 − iε
h̄
V (xn, tn)

}

=

∞∫

−∞

dpn

2πh̄
exp

{ ipn

h̄
(xn+1 − xn)

}

exp

{

− iε
2mh̄

p2
n

}

exp

{

− iε
h̄
V (xn, tn)

}

,

(2.45)
where the second line may be recovered from the third using equation (8) on the sheet of gaussian
integrals (exercise.)

If we introduce a basis of momentum eigenstates satisfying p̂ |pn〉 = pn |pn〉, and recall that x̂ |xn〉 =
xn |xn〉, we may rewrite (2.45) as

〈xn+1, tn+1 xn, tn〉 =

∞∫

−∞

dpn exp

{

− iε
h̄

p2
n

2m

}

〈xn+1 pn〉 exp

{

− iε
h̄
V (xn, tn)

}

〈pn xn〉

=

∞∫

−∞

dpn 〈xn+1| exp

{

− iε
h̄

p̂2

2m

}

|pn〉 〈pn| exp

{

− iε
h̄
V (x̂, tn)

}

|xn〉

= 〈xn+1| exp

{

− iε
h̄

p̂2

2m

}

exp

{

− iε
h̄
V (x̂, tn)

}

|xn〉 ,

(2.46)

To get the last line we used the completeness of the momentum basis
∫

dpn |pn〉 〈pn| = 1̂.

Finally, we use the Baker-Campbell-Hausdorff formula

eÂ eB̂ = eÂ+B̂+(1/2)[Â,B̂]+... (2.47)

to combine the exponentials. All terms beyond the first two on the RHS are of order O(ε2), so

〈xn+1, tn+1 xn, tn〉 = 〈xn+1| exp

{

− iε
h̄
H(x̂, p̂, tn)

}

|xn〉 , (2.48)

where

H(x̂, p̂, t) =
p̂2

2m
+ V (x̂, t) ≡ Ĥ(t)



is the quantum-mechanical analogue of the classical Hamiltonian.

Remembering that ε = tn+1− tn, then for infinitesimal t− t0, this result may be written in the form

|x, t〉 = exp

{ ī
h

(t− t0)Ĥ(t0)

}

|x〉 . (2.49)

If we differentiate (2.49) with respect to time t, we get the following differential equation:

∂

∂t
|x, t〉 =

ī
h
Ĥ(t) |x, t〉 ⇒ Ĥ(t) |x, t〉 = −ih̄ ∂

∂t
|x, t〉 .

where we used Ĥ(t0) ≈ Ĥ(t) for infinitesimal t − t0. Now define ψ(x, t) = 〈x, t ψ〉, so 〈ψ x, t〉 =
ψ∗(x, t), then (exercise)

Ĥψ(x, t) =

(

− h̄2

2m

∂2

∂x2
+ V (x, t)

)

ψ(x, t) = ih̄ ∂
∂t
ψ(x, t) . (2.50)

Equation (2.50) is of course known as the Schrödinger equation.

Notes:

1. The argument is reversible: starting from the Schrödinger equation, we can derive Feynman’s path
integral representation. Indeed, this is the route followed by most text books.

2. We can use the expression in the third line of (2.45) to construct an alternative representation of
the path integral, called the phase space path integral:

〈xb, tb xa, ta〉 = lim
N→∞

(
N∏

n=1

∫

dxn

)(
N+1∏

n=1

∫
dpn

2πh̄

)

exp

{ iε
h̄

N+1∑

n=1

[

pn
(xn − xn−1)

(tn − tn−1)
− p2

n

2m
− V (xn, tn)

]}

≡
∫

Dx
∫

Dp exp







ī
h

tb∫

ta

dt (pẋ−H(x, p, t))







(2.51)

where H is the classical Hamiltonian. This has the advantage of a natural measure – there are
no normalisation factors because of Liouville’s theorem – and is particularly useful in statistical
mechanics.

3. We can use (2.51) to give yet another derivation of the free particle amplitude:

〈xb, tb xa, ta〉 = lim
N→∞

(
N∏

n=1

∫

dxn

)(
N+1∏

n=1

∫
dpn

2πh̄

)

exp

{ ī
h

N+1∑

n=1

(

pn(xn − xn−1) −
εp2

n

2m

)}

= lim
N→∞

1

2πh̄

(
N+1∏

n=1

∫

dpn

)
N∏

n=1

δ(pn+1 − pn) exp

{ ī
h

(

pN+1xb − p1xa − ε

2m

N+1∑

n=1

p2
n

)}

=

∞∫

−∞

dp

2πh̄
exp

{ ī
h
p(xb − xa) − i

2mh̄
(N + 1)εp2

}

=

√
m

2πih̄(tb − ta)
exp

{ im
2h̄

(xb − xa)2

tb − ta

}

where we rewrote the sum in the first line

N+1∑

n=1

pn(xn − xn−1) = pN+1xb − p1xa −
N∑

n=1

xn(pn+1 − pn) .

in order to perform theN integrals over the xn. We then used the resulting delta functions to perform
the integrals over the first N momenta pi, leaving just one momentum integral (over pN+1 ≡ p)
which may be done using integral (8) on the sheet of Gaussian Integrals.



4. The equation (2.49) may be regarded as a solution of the Schrödinger equation for infinitesimal
t− t0. If the Hamiltonian were time-independent, (2.49) would hold for all t,

|x, t〉 = exp

{ ī
h

(t− t0)Ĥ

}

|x〉 ≡ Û †(t, t0) |x〉

whereas, for a general time-dependent Hamiltonian, we must write:

|x, t〉 = Û †(t, t0) |x〉 (2.52)

where, from (2.49), the time evolution operator Û(t, t0) satisfies the Schrödinger-like equation (ex-
ercise): ih̄ ∂

∂t
Û(t, t0) = ĤÛ(t, t0) (2.53)

with the boundary condition Û(t0, t0) = 1̂.

Clearly, Û must be unitary, since it changes bases |x〉 7→ |x, t〉:

Û−1(t, t0) = Û(t0, t) = Û †(t, t0).

5. The Schrödinger and Heisenberg pictures

We may now write
ψ(x, t) = 〈x, t ψ〉 = 〈x| Û(t, t0) |ψ〉 ≡ 〈x ψ, t〉

where we have defined the time-dependent state vector |ψ, t〉 ≡ Û(t, t0) |ψ〉, which satisfies the
Schrödinger equation

Ĥ |ψ, t〉 = ih̄ ∂
∂t

|ψ, t〉 .

We say that |ψ, t〉 and |x〉 are the state vector and position eigenstate in the Schrödinger picture

for time dependence in quantum mechanics, whereas |ψ〉 and |x, t〉 are the equivalent quantities
in the Heisenberg picture. These two “pictures” for describing time dependence in the operator
formulation of quantum mechanics are of course equivalent in that they give the same physical
predictions for all observables.

The wave-function ψ(x, t) = 〈x ψ, t〉 = 〈x, t ψ〉 is (by definition) the same in both pictures.

Clearly, Schrödinger-picture operators such as x̂ =
∫

dx x |x〉 〈x| are time-independent while in
the Heisenberg picture x̂(t) =

∫
dx x |x, t〉 〈x, t| is time-dependent. So we write x̂ |x〉 = x |x〉 and

x̂(t) |x, t〉 = x |x, t〉 .
What is the relation between x̂ and x̂(t)? Inverting (2.52) gives |x〉 = Û(t, t0) |x, t〉, hence

〈x| x̂ |x〉 = 〈x, t| Û †(t, t0) x̂ Û(t, t0) |x, t〉 ≡ 〈x, t| x̂(t) |x, t〉

This must hold ∀ |x, t〉. Hence, for the two pictures to be equivalent, we must have

x̂(t) = Û †(t, t0) x̂ Û(t, t0) (2.54)

Similarly for other operators. Note that [x̂(t), x̂(t′)] 6= 0 unless t = t′.

However, since ih̄ ∂
∂t

〈x, t ψ〉 = 〈x, t| Ĥ |ψ〉 = 〈x| ÛĤ |ψ〉ih̄ ∂
∂t

〈x ψ, t〉 = 〈x| Ĥ |ψ, t〉 = 〈x| ĤÛ |ψ〉

we must have ÛĤ = ĤÛ ⇒ Ĥ = Û †ĤÛ , i.e. the Hamiltonian is the same in both pictures.

We can now derive the equation of motion for the position operator in the Heisenberg picture:ih̄ ∂
∂t
x̂(t) =

(ih̄∂Û †

∂t

)

x̂Û + Û †x̂

(ih̄ ∂Û
∂t

)

= −Û †Ĥx̂Û + Û †x̂ĤÛ

=
[

x̂(t), Ĥ
]

(2.55)



This is the Heisenberg Equation of motion for the time-evolution of the position operator in the
Heisenberg picture. The state vector |ψ〉 is time-independent in the Heisenberg picture so it doesn’t
have an equation of motion!

The same argument can be used for any operator Ô(t). If Ô(t) is conserved, ∂Ô(t)/∂t = 0, whence
[

Ô(t), Ĥ
]

= 0. For example, momentum is conserved if and only if
[

p̂(t), Ĥ
]

= 0.

For the rest of this course we will generally adopt the Heisenberg picture.

6. The transition amplitude 〈x, t x′, t′〉 is the retarded Green function for the Schrödinger equation.
For t > t′

ψ(x, t) = 〈x, t ψ〉 =

∫

dx′ 〈x, t x′, t′〉 〈x′, t′ ψ〉

So if we define

G(x, x′; t, t′) =

{
〈x, t x′, t′〉 t > t′

0 t < t′
(2.56)

then θ(t− t′)ψ(x, t) =

∫

dx′ G(x, x′; t, t′)ψ(x′, t′)

Now, since ψ(x, t) satisfies the time-dependent Schrödinger equation, we find

(

− h̄2

2m

∂2

∂x2
+ V (x, t) − ih̄ ∂

∂t

)

θ(t− t′)ψ(x, t) = −ih̄δ(t− t′)ψ(x, t)

so

(

− h̄2

2m

∂2

∂x2
+ V (x, t) − ih̄ ∂

∂t

)

G(x, x′; t, t′) = −ih̄δ(t− t′) δ(x − x′) ∀ t, t′

Multiply the second equation by ψ(x′, t′), integrate with respect to x′, and then compare with the
last line of (2.56) to recover the first equation.

Note that we choose G(x, x′; t, t′) = 0 for t < t′ because in non-relativistic quantum mechanics we
only consider paths in which the particle moves forwards in time.

7. For time-independent Hamiltonians, it is usual to expand in a basis of energy eigenstates |n〉 with
n = 0, 1, 2, 3, . . .

Ĥ |n〉 = En |n〉 ; un(x) ≡ 〈x n〉 . (2.57)

So for t > 0 the Green function is:

G(x, y; t) ≡ 〈x, t y, 0〉 = 〈x| e−itĤ/h̄ |y〉 =
∑

n

〈x| e−itĤ/h̄ |n〉 〈n y〉

=
∑

n

e−itEn/h̄un(x)u∗n(y)
(2.58)

Let us take the Fourier transform of G(x, y; t) with respect to t:

G̃(x, y;E) =
∑

n

∞∫

0

dt eit(E−En)/h̄ un(x)u∗n(y) eit(iǫ)/h̄ = ih̄∑
n

un(x)u∗n(y)

E − En + iǫ (2.59)

The iǫ (ǫ > 0, infinitesimal) is introduced to ensure that for positive real energies the integral
converges at the upper limit. Bound states correspond to poles in G̃(x, y;E), which lie just below
the real axis in the complex E plane. i.e. at En−iǫ, ensuring that when we do the inverse transform
we recover the retarded (or causal) Green function (i.e. G(x, y; t) = 0 for t < 0.)

Technical note: An iǫ is also necessary for the convergence of the path integral, e.g. for the harmonic
oscillator, En → En − iǫ if ω → ω − iǫ, ω > 0, i.e. ω2 → ω2 − iǫ, so

S[x] → S[x] + iǫm ∫ dt x2, and exp{iS/h̄} → exp{iS/h̄} exp

{

−ǫ(m/h̄)
∫

dtx2

}

The last term is a convergence factor which damps paths with very large x2, it ensures that the
path integral gives causal propagation in non-relativistic quantum mechanics.

Setting x = y and integrating over x in (2.58) (i.e. taking the trace) gives (for t > 0):

∞∫

−∞

dx 〈x, t x, 0〉 =

∫

dx G(x, x; t) =
∑

n

e−itEn/h̄

∫

dx |un(x)|2 =
∑

n

e−itEn/h̄ (2.60)



for orthonormal energy eigenfunctions un(x).

Hence, if we know G(x, y; t), we can use this expression to deduce the energy eigenvalues. For
example let us consider the harmonic oscillator:

∞∫

−∞

dx 〈x, t x, 0〉 =

∞∫

−∞

dx

√
mω

2πih̄ sinωt
exp







imω
2h̄ sinωt

2x2(cosωt− 1)
︸ ︷︷ ︸iScl/h̄,







=
1

2i 1

sin ωt
2

(gaussian integral)

=
e−iωt/2

1 − e−iωt
= e−iωt/2

∞∑

n=0

e−inωt =
∑

n

e−itEn/h̄ (using (2.60))

(2.61)

It follows that

En =

(

n+
1

2

)

h̄ω

The eigenfunctions may also be deduced in this way (tutorial.)

2.10. Single particle in an Electromagnetic Field

The Lagrangian for a particle of charge e in an electromagnetic field is (in Heaviside-Lorentz units)

L(x, ẋ, t) =
1

2
m|ẋ|2 − eφ+

e

c
ẋ ·A (2.62)

where φ(x, t) is the electric potential (also known as the “scalar” or electrostatic potential) and
A(x, t) is the magnetic vector potential with

E = −∇φ− 1

c

∂A

∂t
and B = ∇×A (2.63)

The classical Hamiltonian is

H(x, p, t) =
1

2m

∣
∣
∣p− e

c
A
∣
∣
∣

2

+ eφ (2.64)

Exercise: verify explicitly that the Lagrangian (2.62) gives the Lorentz force and the classical
Hamiltonian above. (See Junior Honours Lagrangian Dynamics notes & tutorials if necessary.)

One can then derive the quantum Hamiltonian H(x̂, p̂, t) and the corresponding Schrödinger equa-

tion. However, this is tricky because
[
p̂, A(x̂, t)

]
6= 0 (tutorial).

Gauge invariance: Classically, the E and B fields (and thus the classical path) are unchanged
under the gauge transformation

A→ A+ ∇χ and φ→ φ− 1

c

∂χ

∂t
(2.66)

for any function χ(x, t). However, the Lagrangian changes:

L→ L+
e

c
ẋ · ∇χ+

e

c

∂χ

∂t
= L+

e

c

dχ

dt
(2.67)

where we noted that ẋ · ∇χ + ∂χ
∂t = dχ

dt , the total derivative with respect to t. But adding a total
derivative to the Lagrangian doesn’t change the classical Lagrange equations of motion (see La-

grangian Dynamics notes), so our previous claim that classical physics is “gauge invariant” remains
valid.

However, the action does change:

S =

∫ tb

ta

dt L→ S +
e

c

∫ tb

ta

dt
dχ

dt
= S +

e

c
(χ(xb, tb) − χ(xa, ta)) (2.68)

so the transition amplitude also changes:

〈xb, tb xa, ta〉 =

x
b∫

x
a

Dx eiS/h̄ →






x
b∫

x
a

Dx eiS/h̄




 exp

{ ie
h̄c

(χ(xb, tb) − χ(xa, ta))

}

(2.69)

From this we may deduce

|x, t〉 → exp

{

− ie
h̄c
χ(x, t)

}

|x, t〉 (2.70)

which is an independent phase change locally at every point in space and time. The transition
probability ∝ |〈xb, tb xa, ta〉|

2
is of course unchanged. This is a huge symmetry of the theory, and

is known as a U(1) local gauge symmetry.



2.11. The Aharonov-Bohm effect

Consider a double slit experiment involving charged particles and a magnetic field.
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The magnetic field B points out of the page and is non-zero in the shaded area only – think of a
long thin solenoid – and we assume the slits are shielded from the magnetic field perfectly. The B
field corresponds to a magnetic vector potential A whose field lines form circles around the solenoid
as shown.

Classically, we expect the field to have no effect because the particles don’t travel through the region
of non-zero magnetic field. The A field is non-zero along the paths but the vector potential has no
direct significance in classical physics.

Quantum mechanically, the dominant contributions to the transition amplitude 〈f i〉 will come from
paths close to the classical paths x1(t) and x2(t) shown in the figure. In the absence of the field, we
add the amplitudes as usual, so the contribution of these paths is

eiS[x1]/h̄ + eiS[x2]/h̄ = eiS[x1]/h̄
(

1 + ei(S[x2]−S[x1])/h̄
)

(2.71)

and we get interference from the relative phase φ = (S[x2] − S[x1])/h̄.

When we add a magnetic field (assumed time-independent) the Lagrangian changes:

L→ L+
e

c
ẋ · A

so

S → S +
e

c

∫ tb

ta

dt
dx

dt
·A = S +

e

c

∫ tb

ta

dx(t) ·A (2.72)

Therefore, when we switch on the magnetic field, there is a change in the relative phase

δφ =
e

h̄c

(∫ tb

ta

A · dx2(t) −
∫ tb

ta

A · dx1(t)

)

=
e

h̄c

∮

C

A · dx(t) ≡ e

h̄c
Φ

(2.73)

where the curve C is the closed path x2−x1. This path clearly encircles the region of non-zero
magnetic field, but the magnetic field is zero everywhere on the closed path itself. Using Stokes’
theorem we may write

Φ =

∮

C

A · dx(t) =

∫

S

∇×A · dS =

∫

S

B · dS (2.74)

where S is any surface bounded by the closed curve x2−x1 in the diagram. So Φ is the total magnetic

flux passing in between the two paths, and the interference pattern shifts by (e/h̄c)Φ even though
the particle hasn’t passed through any region of non-zero magnetic field B, and has therefore felt
no direct electromagnetic forces! We get the same phase shift δφ for all paths x1(t) and x2(t) which
don’t penetrate the region of non-zero magnetic field B, not just for the classical paths.



Notes:

(1) Φ is gauge invariant. If A→ A+ ∇χ, then

Φ → Φ +

∮

C

∇χ · dx = Φ +

∮

C

dχ = Φ + 0 = Φ . (2.75)

(2) Only the flux passing between the two paths is included.

(3) The effect is periodic: there is no effect if δφ = 2nπ, i.e. when

Φ = 2πn
h̄c

e
= n

hc

e
, n = 0, ±1, ±2, . . . (2.76)

(4) From the shift in the interference pattern, we deduce that the vector potential A(x) is not just a
mathematical artifice, as might be concluded from classical physics.

(5) The Aharonov-Bohm effect was first observed in 1960.

2.12. Transition Elements

Besides transition amplitudes, we are also interested in transition elements where the sum over all
paths is weighted by some function(al) of x(t). The simplest example is (ta ≤ t ≤ tb):

〈x(t)〉S ≡
xb∫

xa

Dx x(t)eiS[x(t)]/h̄ =

xb∫

x

Dx
∞∫

−∞

dx

x∫

xa

Dx exp







ī
h

tb∫

t

L dt






x exp







ī
h

t∫

ta

L dt







=

∫

dx 〈xb, tb x, t〉x 〈x, t xa, ta〉 =

∫

dx 〈xb, tb| x̂(t) |x, t〉 〈x, t xa, ta〉

= 〈xb, tb| x̂(t) |xa, ta〉

(2.77)

which is the matrix element of the operator x̂(t) in the Heisenberg picture. It is easy to see that for
any local function f(x(t)):

〈xb, tb| f(x̂(t)) |xa, ta〉 =

xb∫

xa

Dx f(x(t)) eiS[x(t)]/h̄ . (2.78)

Now consider correlations between x(t) and x(t′) with t 6= t′. For t > t′:

〈x(t)x(t′)〉S ≡
xb∫

xa

Dx x(t)x(t′) eiS/h̄ =

∫

dx

∫

dx′ 〈xb, tb x, t〉 x 〈x, t x′, t′〉x′ 〈x′, t′ xa, ta〉

=

∫

dx

∫

dx′ 〈xb, tb| x̂(t) |x, t〉 〈x, t| x̂(t′) |x′, t′〉 〈x′, t′ xa, ta〉

= 〈xb, tb| x̂(t) x̂(t′) |xa, ta〉

For t < t′, we get the same thing with t↔ t′, i.e.

〈x(t)x(t′)〉S = 〈xb, tb| x̂(t′)x̂(t) |xa, ta〉

So, in general we have:

xb∫

xa

Dx x(t)x(t′)eiS/h̄ = 〈xb, tb|T (x̂(t) x̂(t′)) |xa, ta〉 (2.79)

where
T (x̂(t)x̂(t′)) ≡ θ(t− t′)x̂(t)x̂(t′) + θ(t′ − t)x̂(t′)x̂(t) (2.80)

is called the time ordered product. Note, that x̂(t) and x̂(t′) do not commute (unless t = t′) because
they are Heisenberg-picture operators.



Clearly, this may be generalised to any number of local insertions:

〈f1(x(t1)) . . . fn(x(tn))〉S = 〈xb, tb|T (f1(x̂(t1)) . . . fn(x̂(tn))) |xa, ta〉

=

xb∫

xa

Dx f1(x(t1)) . . . fn(x(tn)) eiS[x(t)]/h̄ (2.81)

Note that the quantities fi(x̂(ti)) in the “quantum” expression on the RHS of the first line of (2.81)
are non-commuting operators, whilst the quantities fi(x(ti)) in the path integral on the second line
are ordinary commuting numbers.

Between more general states, we simply insert complete sets of position eigenstates: for example

〈ψ|T (x̂(t1) . . . x̂(tn) |φ〉 =

∫

dxa

∫

dxb 〈ψ xb, tb〉 〈xb, tb|T (x̂(t1) . . . x̂(tn)) |xa, ta〉 〈xa, ta φ〉

=

∫

dxa

∫

dxb ψ
∗(xb, tb)φ(xa, ta)
︸ ︷︷ ︸

wave functions

xb∫

xa

Dx x(t1) . . . x(tn)eiS/h̄

︸ ︷︷ ︸

transition elements

(2.82)

These “transition elements” or “matrix elements” or “Green functions” or “correlation functions”
(in statistical mechanics language) will play a central role in what follows.

We can also define transition elements with insertions of time derivatives of x(t). However, these are
more tricky since ẋ = p/m, and p̂(t) and x̂(t) do not commute. To understand the issues involved,
we consider a couple of examples.

We start by going back to the basic definition of the path integral:

〈xb, tb xa, ta〉 = lim
N→∞

AN

(
N∏

n=1

∫

dxn

)

exp

{ iε
h̄

N+1∑

n=1

[

m

2

(
xn − xn−1

ε

)2

− V (xn, tn)

]}

(2.83)

Now, since
∫∞

−∞
dxp

∂
∂xp

f(xp) = 0 for any function f(xp) which approaches zero sufficiently quickly

as |xp| → ∞, and for any p ∈ {1, . . . , N}, we must have:

0 = lim
N→∞

AN

(
N∏

n=1

∫

dxn

)

∂

∂xp

(

F (xp) exp

{ iε
h̄

N+1∑

n=1

[

m

2

(
xn − xn−1

ε

)2

− V (xn, tn)

]})

= lim
N→∞

AN

(
N∏

n=1

∫

dxn

)(
∂F

∂xp
− iε
h̄
F (xp)

{
m

ε2
(xp+1 − 2xp + xp−1) +

∂V

∂xp

})

exp {. . .}

(2.84)
Technical note: The integral should be considered as the limit of the analytic continuation of an
integral with a real part in the exponential argument. So the integral is well-defined although it
looks divergent.

As ε→ 0 we can rewrite terms in (2.84):

lim
ε→0

xp+1 − xp

ε
= ẋ, while lim

ε→0

xp+1 − 2xp + xp−1

ε2
= lim

ε→0

1

ε

(
xp+1 − xp

ε
− xp − xp−1

ε

)

= ẍ

(2.85)
If we now set F = 1, so ∂

∂xp
F = 0, then as N → ∞ we get:

0 =

∫

Dx
(

mẍ(t) +
∂V

∂x

)

eiS/h̄ ⇒ 〈ẍ〉S = − 1

m

〈
∂V

∂x

〉

S

(2.86)

Equation (2.86) is the quantum version of the classical equation of motion and is known as Ehren-
fest’s theorem.

If instead we take F = xp, so ∂
∂xp

F = 1, we get:

0 =

∫

Dx eiS/h̄ lim
ε→0

(

1 − ī
h

{

mxp

[
xp+1 − xp

ε
− xp − xp−1

ε

]

+ εxp
∂V

∂xp

})

(2.87)



So, remembering the time ordering rule, and writing mẋ(t) ≡ p(t), we get:

0 = lim
ε→0

〈xb, tb| (1 − (i/h̄)T (x̂(t)p̂(t+ ε/2)− x̂(t)p̂(t− ε/2))) |xa, ta〉

= 〈xb, tb| 1 − ī
h

(p̂(t)x̂(t) − x̂(t)p̂(t)) |xa, ta〉 (ta < t < tb)
(2.88)

whence the usual commutation relation

[x̂, p̂] = ih̄ . (2.89)

It follows that we only get the ordering of x̂ and p̂ correct if we are careful with the time ordering
in the path integral. However, since xp+1 = xp +O(ε) (by continuity),

xp(xp − xp−1) = xp+1(xp+1 − xp) + O(ε),

we may also write (2.87) as

0 =

∫

Dx eiS/h̄ lim
ε→0

(

1 − ī
h
m

{

xp
xp+1 − xp

ε
− xp+1

xp+1 − xp

ε
(1 −O(ε))

})

,

so: 〈

m

(
xp+1 − xp

ε

)2
〉

S

= − h̄iε + O(1) (2.90)

But if we now want to take the limit ε → 0, we get that
〈
ẋ(t)2

〉

S
or
〈
p(t)2

〉

S
are infinite! This

shows that the paths that we integrate over are not smooth. The action is finite (for paths that
count), so from (2.84), ε(δx/ε)2 is finite, i.e. δx ∼ √

ε, δẋ ∼ 1/
√
ε. The paths are continuous but

jagged. This phenomenon is called Zitterbewegung.

How then do we define the kinetic energy? The trick is to use

lim
ε→0

1

2m
〈p̂(t+ ε/2)p̂(t− ε/2)〉 (2.91)

To see that this is finite, take F = xp+1 − xp, so ∂
∂xp

F = −1, and so, from (2.84):

〈−1〉 =
iεm
h̄

〈(
xp+1 − xp

ε

)(
xp+1 − xp

ε
− xp − xp−1

ε

)

+ (xp+1 − xp)
︸ ︷︷ ︸

O(ε)

∂V

∂xp

〉

(2.92)

so
1

2m
〈p̂(t+ ε/2)p̂(t− ε/2)〉 ≃ m

2

〈(
xp+1 − xp

ε

)(
xp − xp−1

ε

)〉

+O(ε)

=

〈

m

2

(
xp+1 − xp

ε

)2

︸ ︷︷ ︸

≃− h̄
2iε +O(1) using (2.90)

+
h̄

2iε〉+O(ε)
(2.93)

so the limit ε → 0 exists. This is getting rather technical but it gives a (trivial) example of
renormalisation in quantum mechanics - using a “point-splitting” regularisation.



3. Perturbation Theory

3.1. Time independent transitions

Most dynamical systems are not exactly solvable (either classically or quantum mechanically). How-
ever, we can often separate the action into a solvable part and a perturbation

S[x(t)] = S0[x(t)] + S1[x(t)]. (3.1)

For example for a particle in a slowly-varying potential:

S0[x(t)] =

tb∫

ta

dt
1

2
mẋ2 ; S1[x(t)] = −

tb∫

ta

dt V (x(t), t) (3.2)

or S0[x(t)] =

tb∫

ta

dt

(
1

2
mẋ2 − U(x)

)

; S1[x(t)] = −
tb∫

ta

dt Ṽ (x(t), t) (3.3)

where Ṽ (x, t) = V (x, t) − U(x), so L0 is time-independent. Sometimes we take U = (m/2)ω2x2, so
that L0 is the Lagrangian of a harmonic oscillator. It all depends on the problem we want to solve.
Then the transition amplitude is (using (3.2)):

〈xb, tb xa, ta〉 =

∫

Dx exp

{ ī
h

(S0[x(t)] + S1[x(t)])

}

=

∫

Dx eiS0[x(t)]/h̄
∞∑

n=0

1

n!

( ī
h
S1[x(t)]

)n

=

∞∑

n=0

1

n!

(

− ī
h

)n
tb∫

ta

dt1 · · ·
tb∫

ta

dtn

xb∫

xa

Dx V (x(t1), t1) · · · V (x(tn), tn) eiS0[x(t)]/h̄

(3.4)
assuming that we can exchange the order of the infinite sum and the functional integration. Each
term in the series is a transition element. For ta < t1 < t2 < . . . < tn < tb, we have

xb∫

xa

Dx V (x(t1), t1) · · ·V (x(tn), tn) eiS0/h̄ =

=

∫

dx1 · · ·
∫

dxn 〈xb, tb xn, tn〉0 V (xn, tn) 〈xn, tn xn−1, tn−1〉0 · · ·V (x1, t1) 〈x1, t1 xa, ta〉0
(3.5)

where the subscript zero indicates that these are transition amplitudes evaluated with S0. All that
remains to be done is to evaluate the transition elements.

It is useful to represent the series in (3.4) & (3.5) pictorially. Denoting the transition amplitudes
〈x, t x′, t′〉0 by straight lines and insertions of the potential by wiggles, we have:

〈xb, tb xa, ta〉 =

ta

tb

+

ta
t1

tb

+
ta

t1 t2
tb

+ . . . (3.6)

In words: the full amplitude can be written as a sum of “partial” amplitudes in which the particle
is: not scattered + scattered once + scattered twice + · · ·.



The integrals over xi and ti ensure that we sum over all paths, and the 1/n! ensures that paths with
different time orderings are not double counted, since:

1

n!

tb∫

ta

dt1 · · ·
tb∫

ta

dtn V (t1) · · ·V (tn) =

tb∫

ta

dtn

tn∫

ta

dtn−1 · · ·
t3∫

ta

dt2

t2∫

ta

dt1 V (t1) · · ·V (tn) (3.7)

so ta ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ tb is the only one we need to consider.

Proof: of (3.7) for n = 2. Generalisation to all n can be done by induction (tutorial). Since

tb∫

ta

dt2

tb∫

ta

dt1 V (t1)V (t2) =

tb∫

ta

dt2





t2∫

ta

dt1 V (t1)V (t2) +

tb∫

t2

dt1 V (t1)V (t2)



 ,

it suffices to show that:

tb∫

ta

dt2

t2∫

ta

dt1 V (t1)V (t2) =

tb∫

ta

dt1

tb∫

t1

dt2 V (t1)V (t2) (swapped order of integrals)

=

tb∫

ta

dt2

tb∫

t2

dt1 V (t2)V (t1) (relabelled dummy integrands: t1 ↔ t2)

This works because the integrand is symmetric under t1 ↔ t2, V (t1)V (t2) = V (t2)V (t1).

Using the result from (3.5) and (3.7) in (3.4), we have:

〈xb, tb xa, ta〉 = 〈xb, tb xa, ta〉0 +

∞∑

n=1

(

− ī
h

)n ∫

dx1 · · ·
∫

dxn

tb∫

ta

dtn

tn∫

ta

dtn−1 · · ·
t2∫

ta

dt1

〈xb, tb xn, tn〉0 V (xn, tn) 〈xn, tn xn−1, tn−1〉0 · · ·V (x1, t1) 〈x1, t1 xa, ta〉0

⇒ 〈xb, tb xa, ta〉 = 〈xb, tb xa, ta〉0 −
ī
h

∞∫

−∞

dx

tb∫

ta

dt 〈xb, tb x, t〉0 V (x, t) 〈x, t xa, ta〉

(3.8)
To see this last result, expand the second line iteratively by repeatedly substituting the left-hand
side into the right-hand side. It is easy to understand equation (3.8) pictorially:

ta

tb

=

ta

tb

+

ta
t

tb

(3.9)

The full amplitude = unscattered amplitude + sum of processes with the last scattering at time t.

In terms of wavefunctions we can express (3.8) as follows:

〈x, t ψ〉 =

∞∫

−∞

dx′′ 〈x, t x′′, t0〉 〈x′′, t0 ψ〉 =

∞∫

−∞

dx′′ 〈x, t x′′, t0〉0 〈x′′, t0 ψ〉

− ī
h

∞∫

−∞

dx′
t∫

t0

dt′ 〈x, t x′, t′〉0 V (x′, t′)

∞∫

−∞

dx′′ 〈x′, t′ x′′, t0〉 〈x′′, t0 ψ〉

= 〈x, t ψ〉0 −
ī
h

∞∫

−∞

dx′
t∫

t0

dt′ 〈x, t x′, t′〉0 V (x′, t′) 〈x′, t′ ψ〉

i.e. ψ(x, t) = ψ0(x, t) −
ī
h

∞∫

−∞

dx′
t∫

t0

dt′ 〈x, t x′, t′〉0 V (x′, t′)ψ(x′, t′)

(3.10)

where ψ0(x, t) = 〈x, t ψ〉0 satisfies the unperturbed Schrödinger equation.



Using
(ih̄ ∂

∂t
− Ĥ0(x, t)

)

ψ0(x, t) = 0

and (ih̄ ∂
∂t

− Ĥ0(x, t)

)

〈x, t x′, t′〉0 = ih̄δ(t− t′) δ(x − x′) (t ≥ t′)

(see the equation above (2.57)), equation (3.10) becomes

(ih̄ ∂
∂t

− Ĥ0(x, t)

)

ψ(x, t) = 0 − ī
h

ih̄ ∞∫

−∞

dx′
∞∫

−∞

dt′ δ(t− t′)δ(x− x′)V (x′, t′)ψ(x′, t′) = V (x, t)ψ(x, t)

⇒ ih̄ ∂
∂t
ψ = (Ĥ0 + V )ψ = Ĥψ

The last line of (3.10) is therefore an integral equation for ψ, which is equivalent to Schrödinger’s
equation.

3.2. Fixed target scattering

Consider elastic scattering of a particle of mass m in a fixed potential V (x, t). We need to find

lim
tb→+∞

ta→−∞

〈x b, tb xa, ta〉 = lim
tb→+∞

ta→−∞

〈x b| Û(tb, ta) |x a〉 ≡ 〈x b| Ŝ |x a〉

where the operator Ŝ ≡ Û(∞,−∞) is called the Scattering Operator or the “S-matrix”. Since Û is
unitary, Ŝ is also unitary: Ŝ†Ŝ = 1̂ (what goes in must come out!)

|x b, tb〉 is called the “out” state, a free particle state in the far future, and |x a, ta〉 is called the “in”
state, a free particle state in the far past, where we have assumed that the potential V (x, t) is short
ranged: V (±∞, t) = 0.

If the interaction is time-independent, (i.e. just V (x)), then

lim
tb→+∞

ta→−∞

〈x b, tb x a, ta〉 = lim
T→∞

〈x b, T/2 xa,−T/2〉 = lim
T→∞

〈x b, T xa, 0〉

by time translation invariance. So, from equation (3.8) we need to calculate

〈x b, T xa, 0〉 = 〈x b, T xa, 0〉0 −
ī
h

∞∫

−∞

d3x

T∫

0

dt 〈x b, T x, t〉0 V (x) 〈x, t xa, 0〉0 +O(V 2)

where 〈x b, T xa, 0〉0 describes the case of no scattering.

no scattering
V

O target

detector

source

(x  , T)c

(x , t)

θ

(x  , 0)a
Rp

a

r

r

a

a

b

r

p
b

(x  , T)b 

Rb

The unperturbed Lagrangian is just

L =
m

2

(
ẋ2

1 + ẋ2
2 + ẋ2

3

)

so the path integral for the transition amplitude for a free particle in three dimensions in Cartesian
coordinates factorises into 3 one-dimensional path integrals, and hence (exercise)

〈x′, t′ x, t〉0 =
3∏

i=1

〈x′i, t′ xi, t〉0



So the scattering amplitude A in first-order perturbation theory is

A =
−i
h̄

∞∫

−∞

d3x

T∫

0

dt

(
m

2πih̄(T − t)

)3/2

exp

( im|x b − x|2
2h̄(T − t)

)

V (x)
( m

2πih̄t)3/2

exp

( im|x − x a|2
2h̄t

)

Performing the integral over t using

T∫

0

dt

[(T − t)t]
3/2

exp

{

− α

T − t
− β

t

}

=
1

T

√
π

T

(
1√
α

+
1√
β

)

exp

{

−
(√

α+
√

β
)2

/ T

}

(see separate handout) gives

A =
−i
h̄

( m

2πih̄)3 1

T

√
π

T

∞∫

−∞

d3x

{(−im|x a − x|2
2h̄

)−1/2

+

(−im|x b − x|2
2h̄

)−1/2
}

× V (x) exp

{

im

2h̄T

(

|x a − x| + |x b − x|
)2
}

=
−i
h̄

( m

2πih̄T )5/2

T

∞∫

−∞

d3x

(
1

ra
+

1

rb

)

V (x) exp

{
im

2h̄T
(ra + rb)

2

}

where ra ≡ |x a − x| and rb ≡ |x b − x|.
Since the potential is short-range, if Ra ≡ |xa|, Rb ≡ |x b|, and r ≡ |x|, then r ≪ Ra, Rb, so

ra =
(
|x a − x|2

)1/2
= Ra

(

1 − 2x a · x
R2

a

+
r2

R2
a

)1/2

= Ra − n a · x+ . . .

where n a = xa/ra is a unit vector in the direction of x a. Similarly

rb = Rb − n b · x+ . . . and (ra + rb)
2 = (Ra +Rb)

2 − 2(Ra +Rb) (n a + n b) · x+ . . .

So

A ≃ −i
h̄

( m

2πih̄)5/2 1

T 3/2

(
1

Ra
+

1

Rb

)

exp

{
im

2h̄T
(Ra +Rb)

2

}

×
∞∫

−∞

d3xV (x) exp

{

− im

h̄T
(Ra +Rb) (n a + n b) · x)

}

We can measure Ra, Rb and T , and for a short-range potential, we deduce from the diagram on the
previous page, that

E =
1

2
m

(Ra +Rb)
2

T 2
and p

a
= −p na, p

b
= p n b with p = m

(Ra +Rb)

T

so

A ≃ −i
h̄

( m

2πih̄)5/2 1

T 3/2

(
Ra +Rb

RaRb

)

exp{iET/h̄}
∞∫

−∞

d3xV (x) exp
{i((p

a
− p

b
) · x

)

h̄
}

︸ ︷︷ ︸

≡Ṽ (q)

where we defined the momentum transfer h̄q ≡ (p
a
−p

b
). The transition probability per unit volume

is then

P (a→ b) = |A|2 =
1

h̄2

( m

2πh̄

)5 1

T 3

(
Ra +Rb

RaRb

)2

|Ṽ (q)|2

Now note P (a→ c) = |A0|2 = | 〈x c, T xa, 0〉0 |2 =
( m

2πh̄

)3 1

T 3
,



where x c = −Rbn a, is the probability (per unit volume) for no scattering (i.e. for V (x) = 0). So

P (a→ b)

P (a→ c)
=

(
m

2πh̄2

)2(
Ra +Rb

RaRb

)2

|Ṽ (q)|2

Now if we scatter into solid angle dΩ

RR

c

b

a

R  d2
b

a b
Ω

σ

dσ ba

2

R a
2

(R  + R  )  d

θ

Define the differential cross section as

dσ =
# of particles scattered into dΩ from unit area of scattering region / unit time

# of incident particles crossing scattering region / unit area / unit time

=
P (a→ b)R2

b dΩ

P (a→ c) (Ra +Rb)2/R2
a

whence
dσ

dΩ
=

(
m

2πh̄2

)2

|Ṽ (q)|2

Notes:

(1) All factors of T , Ra, Rb cancel when we construct dσ/dΩ, so we can send them to infinity with
impunity.

(2) We assumed initial and final states with definite position. However, we get the same result for any

initial and final states, provided sufficiently localised wave functions cancel when we take the ratio
P (a→ b)/P (a→ c).

(3) For a central potential V (r), r = |x|, the expression for Ṽ (q) simplifies to

∞∫

−∞

d3xV (r) exp
(iq · x) = 2π

∞∫

0

r2dr

+1∫

−1

d(cos θ) exp(iqr cos θ)V (r) =
4π

q

∞∫

0

rV (r) sin(qr)

Hence

dσ

dΩ
=

4m2

h̄4q2

∣
∣
∣
∣
∣
∣

∞∫

0

rV (r) sin(qr)dr

∣
∣
∣
∣
∣
∣

2

with q = |p
a
− p

b
|/h̄ = (2p/h̄) sin θ/2 where θ is the scattering angle. This is of course the same as

the Born approximation result obtained in Section 11 of Quantum Physics.

(4) For the Coulomb potential V (r) = −e2/(4πǫ0r)
∞∫

0

rV (r) sin(qr)dr =
−e2

4πǫ0q

so
dσ

dΩ
=

(
1

4πǫ0

)2
4m2e4

h̄4q4
=

(
1

4πǫ0

)2
e4

16E2
cosec4(θ/2)

(

where E =
p2

2m

)

which is the same as the classical Rutherford cross section. (This “quantum = classical” cross
section doesn’t happen for any potential other than the 1/r potential!)

Technical note: For the integral over the Coulomb potential to converge, we need to define
V (r) = −e2 exp(−µr)/(4πǫ0r), and take the limit µ→ 0 at the end.



3.3. Colliding Beams

Consider two particles of massesm1 and m2 interacting through a mutual potential. The Lagrangian
is

L =
1

2
m1|ẋ 1|2 +

1

2
m2|ẋ 2|2 − V (x 1 − x 2)

=
1

2
M |Ṙ|2 +

1

2
µ|ṙ|2 − V (r)

where

R =
m1x 1 +m2x 2

m1 +m2
, M = m1 +m2

︸ ︷︷ ︸

centre-of-mass motion

, r = x 1 − x 2 , µ =
m1m2

m1 +m2
︸ ︷︷ ︸

relative motion

O

x1

x2

r

R

In the centre-of-mass frame, R ≡ 0, so the first term drops out, and we have simply L = 1
2µ|ṙ|2−V (r),

i.e. the same as in fixed-particle scattering but with x→ r and m→ µ.

So if we consider a colliding beam scattering experiment,

θ
x  /2a

−x  /2

x  /2

−x  /2a

b

b

pb

pa

the differential cross section is simply

dσ

dΩ
=

(
µ

2πh̄2

)2

|Ṽ (q)|2

with q = (p
a
− p

b
)/h̄ as before.

Note that if m2 → ∞, then µ → m1 = m, say, and we recover the fixed target result (Born-
Oppenheimer approximation.)

However, for particles of the same mass m1 = m2 = m, then µ = m/2 and

dσ

dΩ
=

(
m

4πh̄2

)2

|Ṽ (q)|2 ≡ |f(θ)|2

where f(θ) is called the scattering amplitude.



Scattering of identical particles

If the particles are identical, we have two indistinguishable possibilities:

θ

π − θ

Direct Exchange

Classically:

dσtot

dΩ
= |f(θ)|2 + |f(π − θ)|2

But in quantum mechanics, we must add amplitudes, therefore for identical bosons

dσtot

dΩ
= |f(θ) + f(π − θ)|2

so, for example, for the Coulomb potential,

dσtot

dΩ
=

(
1

4πǫ0

)2
e4

16E2

(
1

sin2(θ/2)
+

1

cos2(θ/2)

)2

=

(
1

4πǫ0

)2
e4

E2
cosec4θ

For identical fermions (ignoring spin – see tutorial for spin dependence)

dσtot

dΩ
= |f(θ) − f(π − θ)|2 =

(
1

4πǫ0

)2
e4

16E2

(
1

sin2(θ/2)
− 1

cos2(θ/2)

)2

For the Coulomb potential

dσtot

dΩ
=

(
1

4πǫ0

)2
e4

E2
cos2 θ cosec4θ

which vanishes when θ = π/2, as it must.

0 π

dσ/dΩ dσ/dΩ

00 π

Bosons

π/2 π/2

Fermions

(1/4πǫ0)
2 e4/E2

So we can tell whether particles are bosons or fermions by studying the shape of the differential
cross section.



3.4. Perturbation theory in the operator formalism

Consider the transition amplitude 〈xb, tb xa, ta〉, where the position eigenstates states are in the
Heisenberg picture. From (2.52) and the unitarity of Û , we have

〈xb, tb xa, ta〉 =
(

Û †(tb, t0) |xb〉
)†

Û †(ta, t0) |xa〉 = 〈xb| Û(tb, t0)Û(t0, ta) |xa〉

= 〈xb| Û(tb, ta) |xa〉
(3.11)

where |xa〉 and |xb〉 are position eigenstates in the Schrödinger picture. We shall develop perturba-
tion theory for Û(tb, ta)

Firstly, we use (3.5) to write

xb∫

xa

Dx V (x(t1), t1) · · ·V (x(tn), tn)eiS0/h̄ = 0〈xb, tb|T (V (x̂0(t1), t1) · · ·V (x̂0(tn), tn) |xn, tn〉0 (3.12)

where the states |x, t〉0 and the operators x̂0(t) are in the Heisenberg picture with respect to S0

rather than S,

x̂0(t) = Û †
0 (t, t0) x̂ Û0(t, t0) ,

and the unperturbed evolution operator therefore satisfiesih̄ ∂
∂t
Û0 = Ĥ0Û0 ,

where Ĥ0 is the unperturbed Hamiltonian. This is known as the Dirac or interaction picture.

The perturbative expansion (3.4) may then be written as:

〈xb, tb xa, ta〉 =

∞∑

n=0

1

n!

(

− ī
h

)n
tb∫

ta

dt1 · · ·
tb∫

ta

dtn 0〈xb, tb|T (V (x̂0(t1), t1) · · ·V (x̂(tn), tn)) |xa, ta〉0

=

∞∑

n=0

(

− ī
h

)n
tb∫

ta

dtn

tn∫

ta

dtn−1 · · ·
t2∫

ta

dt1 0〈xb, tb|V (x̂0(tn), tn) · · ·V (x̂0(t1), t1) |xa, ta〉0

(3.13)
which is usually referred to as the Dyson series.

Note that

V (x̂0(t), t) = Û †
0 (t, t0)V (x̂, t)Û0(t, t0) (3.14a)

is the potential energy operator in the interaction picture, and V (x̂, t) is its Schrödinger-picture
equivalent.

Since the time dependence in (3.12) and (3.13) is governed by S0, the states |xb, tb〉0 and |xa, ta〉0
on the RHS of (3.13) are related to the Schrödinger states by

|xa, ta〉0 = Û †
0 (ta, t0) |xa〉 and hence 0〈xb, tb| = 〈xb| Û0(tb, t0) (3.14b)

Furthermore we shall need

Û0(tn, t0)Û
†
0 (tn−1, t0) = Û0(tn, tn−1) (3.14c)

Starting from (3.13), and using (3.11) and (3.14a/b/c) we get another representation for the first of
equations (3.8)

〈xb| Û(tb, ta) |xa〉 = 〈xb| Û0(tb, ta)) |xa〉

+

∞∑

n=1

(

− ī
h

)n
tb∫

ta

dtn · · ·
t2∫

ta

dt1 〈xb| Û0(tb, tn)V (x̂, tn)U0(tn, tn−1)V (x̂, tn−1) · · ·

· · · V (x̂, t2)Û0(t2, t1)V (x̂, t1)Û0(t1, ta) |xa〉



The above equation holds for all states |xa〉 and |xb〉, so we can write it purely in terms of operators

Û(tb, ta) = Û0(tb, ta) +

∞∑

n=1

(

− ī
h

)n
tb∫

ta

dtn · · ·
t2∫

ta

dt1 Û0(tb, tn)V (x̂, tn)U0(tn, tn−1)V (x̂, tn−1)

· · · V (x̂, t2)Û0(t2, t1)V (x̂, t1)Û0(t1, ta)

⇒ Û(tb, ta) = Û0(tb, ta) − ī
h

tb∫

ta

dt Û0(tb, t)V (x̂, t)Û(t, ta)

(3.15)
To see this, expand the second line iteratively by substituting the left-hand side into the right-hand
side – exactly as we did in (3.8). We leave it as an exercise to show that this last expression is the
“solution” of the Schrödinger equation.

3.4. Time dependent transitions

A common situation is where the Lagrangian L0 (corresponding to the action S0) is time indepen-
dent, whilst the Lagrangian L1 of the perturbation (corresponding to S1) is time dependent. Let
us further assume that the Hamiltonian Ĥ0 of the unperturbed system has a discrete spectrum of
bound-state energies En and (Schrödinger-picture) eigenstates |n〉

Ĥ0 |n〉 = En |n〉
(In the Heisenberg-picture, we replace |n〉 → |n, t〉.) Rather than working in the position basis, it is
easier to use the energy eigenbasis, because then the unperturbed transition amplitude is diagonal:

〈m, t n, t′〉0 = 〈m| Û0(t, t
′) |n〉 = 〈m| e−i(t−t′)Ĥ0/h̄ |n〉 = exp

{

−i(t− t′)
En

h̄

}

δmn (3.16)

It follows that the perturbed amplitude in the energy eigenbasis is:

〈b, tb a, ta〉 = 〈b| Û(tb, ta) |a〉 = 〈b| Û0(tb, ta) |a〉 − ī
h

tb∫

ta

dt 〈b| Û0(tb, t)V (x̂, t)Û0(t, ta) |a〉 + · · ·

= 〈b| Û0(tb, ta) |a〉 − ī
h

tb∫

ta

dt
∑

m,n

〈b| Û0(tb, t) |m〉 〈m|V (x̂, t) |n〉 〈n| Û0(t, ta) |a〉 + · · ·

= e−i(tb−ta)Ea/h̄δab −
ī
h

tb∫

ta

dt
∑

m,n

e−i(tb−t)Eb/h̄δmbVmn(t)e−i(t−ta)Ea/h̄δna

= e−i(tb−ta)Ea/h̄δab −
ī
h

e−i(Ebtb−Eata)/h̄

tb∫

ta

dt eit(Eb−Ea)/h̄Vba(t) + · · ·

(3.17)
where Vmn(t) is the matrix element of the potential:

Vmn(t) ≡ 〈m|V (x̂, t) |n〉 =

∞∫

−∞

dx 〈m|V (x̂, t) |x〉 〈x n〉 =

∞∫

−∞

dx u∗m(x)V (x, t)un(x)

The second order term in the expansion is (check this):

(

− ī
h

)2∑

n

tb∫

ta

dt2

t2∫

ta

dt1 e−i(tb−t2)Eb/h̄Vbn(t2)e
−i(t2−t1)En/h̄Vna(t1)e

−i(t1−ta)Ea/h̄

The intermediate ‘virtual’ states n,m, · · · are summed over: a→ n→ b for all possible intermediate
values of n.

It is easy to see how this will generalise to higher orders. Diagramatically, we have again (for a 6= b):

〈b, tb a, ta〉 =

ta
a

b

Vba(t)

tb

+
∑

n ta
a

n
b

Vna(t1)

Vbn(t2)

tb
+
∑

n,m ta
a

n
m

b

Vna(t1)

Vmn(t2)

Vbm(t3)

tb

+ · · ·



If a 6= b, the first (trivial) term vanishes, and the transition probability becomes:

p(a→ b) = | 〈b, tb a, ta〉 |2 =
1

h̄2

∣
∣
∣
∣
∣
∣

tb∫

ta

dt eitωbaVba(t) + O(V 2)

∣
∣
∣
∣
∣
∣

2

(3.18)

where ωba ≡ (Eb−Ea)/h̄ is the transition frequency. This should be familiar from Quantum Physics.

Note that higher order terms interfere: from (3.18), the next correction is O(V 3), not O(V 4).
Writing

Ṽba =

tb∫

ta

dt eiωbatVba(t),

we have

p(a→ b) =
1

h̄2 |Ṽba|2 −
2

h̄3 Re

(

Ṽ ∗
ba

∑

n

ṼbnṼna

)

. (3.19)

When the perturbation is time independent, we can do the t integrals, and the transition amplitude
becomes

e−iTEa/h̄δab+

(
e−iTEb/h̄ − e−iTEa/h̄

)

Eb − Ea
Vba+

∑

n

(
e−iTEb/h̄ − e−iTEn/h̄

) (
e−iTEn/h̄ − e−iTEa/h̄

)

(Eb − En)(En − Ea)
VbnVnb

The transition probability is simply (to first order)

p(a→ b) =

∣
∣e−iTωba − 1

∣
∣
2

h̄2ω2
ba

|Vba|2 =
sin2(ωbaT/2)

h̄2(ωba/2)2
|Vba|2 ≡ f(T, ωba)

h̄2 |Vba|2 (3.20)

where T = tb − ta, as usual, and the function f(t, ω) looks like:

o

t2

ω

f(t,   )ω

2   / tπ

Now consider the case of a transition not to a single final state but to a range R of final states.
Then we have

p(a→ R) =

∫

R

p(a→ E)̺(E) dE, (3.21)

where ̺(E) is the density of final states. Let us assume that the range R is small enough so that
we can consider ̺(E) and Vba to be constant. Since

lim
t→∞

4 sin2(ωbat/2)/(ωba)
2 = 2πtδ(ωb − ωa) (3.22)

We can extend the limits on the integral to infinity for T large enough, and this gives

p(a→ R) =

∞∫

−∞

̺(E)
4

h̄2ω2
ba

sin2(ωbaT/2)|Vba|2 dE =
̺(Eb)

h̄2 |Vba|2
∞∫

−∞

4
sin2(ωbat/2)

ω2
ba

h̄ dωba

=
2π

h̄
̺(Eb)|Vba|2T

(3.23)

Equation (3.23) is known as Fermi’s Golden Rule.


