
5.16 An appropriate turbulent pipe flow velocity profile is

$$\mathbf{V} = u_c \left(\frac{R-r}{R}\right)^{1:n} \hat{\mathbf{i}}$$

where u_c = centerline velocity, r = local radius, R = pipe radius, and \hat{i} = unit vector along pipe centerline. Determine the ratio of average velocity, \bar{u} , to centerline velocity u_c for (a) n = 4; (b) n = 6; (c) n = 8; (d) n = 10

For any cross section area
$$\dot{m} = \rho A \overline{u} = \int_{A} \rho \overrightarrow{V} \cdot \hat{n} dA$$

$$\frac{A/so}{\vec{V} \cdot \hat{n}} = \vec{V} \cdot \hat{i} = u_{\epsilon} \left(\frac{R-r}{R}\right)^{\frac{1}{n}}$$

Thus for a uniformly distributed density, ρ , over area A $\frac{\int_{0}^{R} u_{\mathbf{c}} \left(\frac{R-r}{R}\right)^{\frac{1}{n}} 2\pi r dr}{\pi R^{2}}$

and
$$\frac{\overline{u}}{u_{c}} = 2 \int_{0}^{R} (1 - \frac{r}{R}) \frac{\dot{n}}{(\frac{r}{R})} d(\frac{r}{R}) = \frac{2n^{2}}{2n^{2} + 3n + 1}$$

$$\frac{n}{u_{c}} \frac{\overline{u}}{u_{c}}$$

$$6 \quad 0.791$$

$$8 \quad 0.837$$

$$10 \quad 0.866$$