Area Bounded by a Function in Polar Coordinates:

Suppose we define an arbitrary polar function /(&) that is bounded on the closed interval [a. B].
We then define a partition P of the closed interval [a. 5] such that,

P={tgty, vasty_sptylwherea=ty <ty <-—-<t, q<t, =5

Since our polar function maps how the radius f &) varies with the angle P:, we can approximate

the region ® bounded by (&) using sectors of circles, each with area,
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Given the area for a sector of a circle, we can define upper and lower sums of f®) for P in the
following manner,
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UG, P) = Zm where R; = sup{f(8):6 € [t,_y, t;]}

It should immediately be clear that, given any partition £ of [«. b],
L{f,P)= A= U(f,P)

However, given this last inequality, it may occur that,

sup{L(f, P)} = inf{U(f, P)}

This value must be the area bounded by the function F(8) since there is only one convergent
value between the lower and upper sums of (€ ) for £ . Moreover, if this is the case, we define

the area of B as follows,
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While our previous definition for the area bounded by the function f (€ ) relies on the criterion
that sup{L(f. P} = inf{U(f. P)}, we can quantify this qualification in the following manner,

U(f,P)— L(f,.P) < =,v= =0

We can prove this requirement by noting that,

inf{U(f, P)} — supl{L(F, P} < &, vz = 0, = inf{U(f, P)} < U(f, P) and sup{L(f, P)} = L(f. F)
~ sup{L(f, P)} = inf{U(f, P}

Consequently, the area bounded by the region & is given by,
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In order to consider the Riemann Sum approximating the area bounded by the function /(&) we
make the choose an arbitrary angle &: € [ti-1. %], hence,
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Given this inequality, the Riemann sum converges to the area bounded by the region & if,
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ve>= 0,36 = t; — t;_; = 0 such that <z
We prove this proposition by noting that,
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= U(f,P)-L(f.P) < ¢
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Since f (@) is bounded on the closed interval [@. b] and R =75 =0
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This completes the proof and consequently,
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