To Prove:

$$\forall x [\forall y (y \in x \leftrightarrow y \in x) \land \forall y (x \in y \leftrightarrow x \in y)] \tag{1}$$

First we show that the following is provable:

$$\forall x (\forall y [x \in y \leftrightarrow x \in y \land y \in x \leftrightarrow y \in x]) \tag{2}$$

Proof

- 1. $x \in y \leftrightarrow x \in y \land y \in x \leftrightarrow y \in x$ Tautology.
- 2. $\forall x (\forall y [x \in y \leftrightarrow x \in y \land y \in x \leftrightarrow y \in x])$ By universal closure of propositional tautologies.

Now, if we could show the following:

$$\forall x [\forall y (\phi \land \psi)] \to \forall x (\forall y \phi \land \forall y \psi) \tag{3}$$

we could, by making the relevant substitutions for ϕ and ψ , use 2 to derive 1.

To do this, first consider proving the easier (but still fiddly):

$$\forall y(\phi y \land \psi y) \to (\forall y \phi y \land \forall y \psi y) \tag{4}$$

Proof sketch:

- 1. $\forall y \phi y \to [\forall y \psi y \to ([\forall y \phi y \land \forall y \psi y])]$ Taut
- 2. $(\phi y \wedge \psi y) \rightarrow \phi y$ Taut
- 3. $\forall y [(\phi y \land \psi y) \rightarrow \phi y] \rightarrow [\forall y (\phi y \land \psi y) \rightarrow \forall y \phi y]$ Axiom 3
- 4. $\forall y [(\phi y \land \psi y) \rightarrow \phi y]$ closure of 2 (which is a taut)
- 5. $\forall y(\phi y \wedge \psi y) \rightarrow \forall y \phi y$) 4.3 MP
- 6. $(A \to B) \to [(B \to C) \to (A \to C)]$ (where A is the antecedant of 5, B is the consequent of 5, and C is the consequent of 1) Tautology.
- 7. $(B \rightarrow C) \rightarrow (A \rightarrow C)$ 5 6 MP
- 8. $A \rightarrow C \ 1 \ 7 \ \mathrm{MP}$
- 9. $\forall y(\phi y \wedge \psi y) \rightarrow (\forall y \psi y \rightarrow [\forall y \phi y \wedge \forall y \psi y])$ Above line with A and C written out in full.

- 10. $\phi y \wedge \psi y \rightarrow \psi y$ Taut.
- 11. then basically repeat the steps above to eliminate the middle term in 9 to get the result:
- 12. $\forall y(\phi y \land \psi y) \rightarrow (\forall y \phi y \land \forall y \psi y)$

Using the ideas in this proof, we can show:

$$\forall x (\forall y (\phi y \land \psi y) \to (\forall y \phi y \land \forall y \psi y)) \tag{5}$$

We do this by piggybacking on the above proof: we effectively follow it, but repeatedly performing closure on the tautologies above, and axiom 3 which allows us to repeatedly distribute \forall across conditionals.

Proof sketch.

- 1. $\forall y \phi y \to [\forall y \psi y \to ([\forall y \phi y \land \forall y \psi y])]$ Taut
- 2. $\forall z [\forall y \phi y \rightarrow [\forall y \psi y \rightarrow ([\forall y \phi y \land \forall y \psi y])]$ closure of tautology at 1.
- 3. $(\phi y \wedge \psi y) \rightarrow \phi y$ Taut
- 4. $\forall z(\forall y[(\phi y \land \psi y) \rightarrow \phi y])$ a closure of above tautology
- 5. $\forall y [(\phi y \land \psi y) \rightarrow \phi y] \rightarrow [\forall y (\phi y \land \psi y) \rightarrow \forall y \phi y]$ Axiom 3
- 6. $\forall z(\forall y[(\phi y \land \psi y) \to \phi y] \to [\forall y(\phi y \land \psi y) \to \forall y \phi y])$ closure of above Axiom
- 7. $\forall z(\forall y[(\phi y \land \psi y) \rightarrow \phi y]) \rightarrow \forall z[\forall y(\phi y \land \psi y) \rightarrow \forall y \phi y]$ Use 6, axiom 3, and Modus Ponens.
- 8. $\forall z [\forall y (\phi y \land \psi y) \rightarrow \forall y \phi y] 4 7 \text{ MP.}$
- 9. So, with effort, we have managed to get the closure of 5 of the previous proof, which we couldn't do directly.
- 10. Keep taking closures of tautologies and distributing $\forall z$ as in the move from 6 to 7, to mimic the earlier proof it's a lot of steps, but one should end up with the theorem.