To Prove:

$$
\begin{equation*}
\forall x[\forall y(y \in x \leftrightarrow y \in x) \wedge \forall y(x \in y \leftrightarrow x \in y)] \tag{1}
\end{equation*}
$$

First we show that the following is provable:

$$
\begin{equation*}
\forall x(\forall y[x \in y \leftrightarrow x \in y \wedge y \in x \leftrightarrow y \in x]) \tag{2}
\end{equation*}
$$

Proof

1. $x \in y \leftrightarrow x \in y \wedge y \in x \leftrightarrow y \in x$ Tautology.
2. $\forall x(\forall y[x \in y \leftrightarrow x \in y \wedge y \in x \leftrightarrow y \in x])$ By universal closure of propositional tautologies.

Now, if we could show the following:

$$
\begin{equation*}
\forall x[\forall y(\phi \wedge \psi)] \rightarrow \forall x(\forall y \phi \wedge \forall y \psi) \tag{3}
\end{equation*}
$$

we could, by making the relevant substitutions for ϕ and ψ, use 2 to derive 1.

To do this, first consider proving the easier (but still fiddly):

$$
\begin{equation*}
\forall y(\phi y \wedge \psi y) \rightarrow(\forall y \phi y \wedge \forall y \psi y) \tag{4}
\end{equation*}
$$

Proof sketch:

1. $\forall y \phi y \rightarrow[\forall y \psi y \rightarrow([\forall y \phi y \wedge \forall y \psi y])]$ Taut
2. $(\phi y \wedge \psi y) \rightarrow \phi y$ Taut
3. $\forall y[(\phi y \wedge \psi y) \rightarrow \phi y] \rightarrow[\forall y(\phi y \wedge \psi y) \rightarrow \forall y \phi y]$ Axiom 3
4. $\forall y[(\phi y \wedge \psi y) \rightarrow \phi y]$ closure of 2 (which is a taut)
5. $\forall y(\phi y \wedge \psi y) \rightarrow \forall y \phi y) 43 \mathrm{MP}$
6. $(A \rightarrow B) \rightarrow[(B \rightarrow C) \rightarrow(A \rightarrow C)]$ (where A is the antecedant of 5 , B is the consequent of 5 , and C is the consequent of 1) Tautology.
7. $(B \rightarrow C) \rightarrow(A \rightarrow C) 56 \mathrm{MP}$
8. $A \rightarrow C 17 \mathrm{MP}$
9. $\forall y(\phi y \wedge \psi y) \rightarrow(\forall y \psi y \rightarrow[\forall y \phi y \wedge \forall y \psi y])$ Above line with A and C written out in full.
10. $\phi y \wedge \psi y \rightarrow \psi y$ Taut.
11. then basically repeat the steps above to eliminate the middle term in 9 to get the result:
12. $\forall y(\phi y \wedge \psi y) \rightarrow(\forall y \phi y \wedge \forall y \psi y)$

Using the ideas in this proof, we can show:

$$
\begin{equation*}
\forall x(\forall y(\phi y \wedge \psi y) \rightarrow(\forall y \phi y \wedge \forall y \psi y)) \tag{5}
\end{equation*}
$$

We do this by piggybacking on the above proof: we effectively follow it, but repeatedly performing closure on the tautologies above, and axiom 3 which allows us to repeatedly distribute \forall across conditionals.

Proof sketch.

1. $\forall y \phi y \rightarrow[\forall y \psi y \rightarrow([\forall y \phi y \wedge \forall y \psi y])]$ Taut
2. $\forall z[\forall y \phi y \rightarrow[\forall y \psi y \rightarrow([\forall y \phi y \wedge \forall y \psi y])]$ closure of tautology at 1 .
3. $(\phi y \wedge \psi y) \rightarrow \phi y$ Taut
4. $\forall z(\forall y[(\phi y \wedge \psi y) \rightarrow \phi y])$ a closure of above tautology
5. $\forall y[(\phi y \wedge \psi y) \rightarrow \phi y] \rightarrow[\forall y(\phi y \wedge \psi y) \rightarrow \forall y \phi y]$ Axiom 3
6. $\forall z(\forall y[(\phi y \wedge \psi y) \rightarrow \phi y] \rightarrow[\forall y(\phi y \wedge \psi y) \rightarrow \forall y \phi y])$ closure of above Axiom
7. $\forall z(\forall y[(\phi y \wedge \psi y) \rightarrow \phi y]) \rightarrow \forall z[\forall y(\phi y \wedge \psi y) \rightarrow \forall y \phi y]$ Use 6, axiom 3, and Modus Ponens.
8. $\forall z[\forall y(\phi y \wedge \psi y) \rightarrow \forall y \phi y] 47 \mathrm{MP}$.
9. So, with effort, we have managed to get the closure of 5 of the previous proof, which we couldn't do directly.
10. Keep taking closures of tautologies and distributing $\forall z$ as in the move from 6 to 7 , to mimic the earlier proof - it's a lot of steps, but one should end up with the theorem.
