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1 Three dimensions

Generally, the basic changes in the quantities we use in going from 1D to 3D are as follows.

1D 3D

Position operator x̂ r̂ = x̂i + ŷj + ẑk

Momentum operator p̂ = −ih̄ d
dx p̂ = p̂xi + p̂yj + p̂zk = −ih̄

(
∂
∂xi + ∂

∂yj + ∂
∂zk

)
= −ih̄∇

Kinetic energy T̂ = p̂2

2m = − h̄2

2m
d2

dx2 T̂ = p̂2

2m = − h̄2

2m

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
= − h̄2

2m∇
2

Potential energy V (x) V (r)

Hamiltonian Ĥ = − h̄2

2m
d2

dx2 + V (x) Ĥ = − h̄2

2m∇
2 + V (r)

Wavefunction ψ(x, t) ψ(r, t)

Normalisation
∫
|ψ(x, t)|2 dx = 1

∫
|ψ(r, t)|2 dx dy dz =

∫
|ψ(r, t)|2 d3r = 1

There are two new effects we shall look at, degeneracy and angular momentum and we shall
use the example of the 2D SHO to illustrate them.

2 The two dimensional SHO

Although to describe the real world we clearly need to work in three dimensions, we shall start by
looking at two dimensions. This gives most of the extra QM effects compared to one dimension
but mathematically, two dimensions is simpler than three.

We start by writing down the energy eigenstate equation, i.e. the TISE, of the 2D SHO

Ĥu =
[

− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)

+
mω2

xx2

2
+

mω2
yy

2

2

]

u = Eu

We will try using separation of variables, as we did for the time dependent Schrödinger equation
where ψ(x, t). Here we shall write

u(x, y) = X(x)Y (y)

so that the above equation becomes

− h̄2

2m

(

Y
d2X

dx2
+ X

d2Y

dy2

)

+
mω2

xx2

2
XY +

mω2
yy

2

2
XY = EXY
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Dividing throughout by XY gives
(

− h̄2

2m

1
X

d2X

dx2
+ +

mω2
xx2

2

)

+
(

− h̄2

2m

1
Y

d2Y

dy2
+

mω2
yy

2

2

)

= E

The first set of terms depend on x only and the second set on y only, so these must be constants;
let these be Ex and Ey, respectively. Note E = Ex+Ey so only one of these is really independent.
Using this, then

− h̄2

2m

1
X

d2X

dx2
+

mω2
xx2

2
= Ex

so

− h̄2

2m

d2X

dx2
+

mω2
xx2

2
X = ExX

and similarly for Y . However, the above is the one dimensional SHO energy eigenstate equation.
Hence, the two dimensions act as independent one dimensional SHO systems. This means we
immediately know the eigenvalues

Ex =
(

nx +
1
2

)
h̄ωx, Ey =

(
ny +

1
2

)
h̄ωy

and hence the total energy is

E = Ex + Ey =
(

nx +
1
2

)
h̄ωx +

(
ny +

1
2

)
h̄ωy

and the eigenstate is
unxny = unx(x)uny(y)

where the un are the 1D states. We find the energy depends on two quantum numbers, nx and
ny, rather than just one so we need to label the eigenstates unxny . This is very general and is
due to moving to 2D; it is not particular to the SHO. In 3D, this means we need three quantum
numbers to label eigenstates, e.g. unlm, as we shall see in the later lectures.

3 Degeneracy

What happens if the two dimensions have the same potential, i.e. ωx = ωy = ω0? The potential
takes the form

V (x, y) =
mω2

xx2

2
+

mω2
yy

2

2
=

mω2
0(x2 + y2)

2
=

mω2
0r

2

2
= V (r)

and so becomes a central potential, i.e. it has circular symmetry. Also, the energies are given
by

E = Ex + Ey = (nx + ny + 1) h̄ω0

The ground state clearly has nx = ny = 0, for which E0 = h̄ω0. However, there are now two first
excited states, given by nx = 1, ny = 0 and nx = 0, ny = 1, both of which have E1 = 2h̄ω0. This
effect, whereby there is more than one eigenstate with the same eigenvalue, is called degeneracy.
This clearly results from the symmetry of the potential, i.e. because the value of ω0 is the same
for x and y. This is a general result; a symmetry of the system gives rise to degeneracy in the
eigenstates. In three dimensions, there is often spherical symmetry of potentials, e.g. in the
hydrogen atom, and so we will see there is a lot of degeneracy of the energies in such systems.

There is one critical result which needs to be emphasised about degeneracy. For the two first
excited states above, let u10 be the first and u01 the second. These satisfy

Ĥu10 = E1u10, Ĥu01 = E1u01
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However, consider the superposition

ψ = αu10 + βu01

for any constants α and β, for which

Ĥψ = αĤu10 + βĤu01 = αE1u10 + βE1u01 = E1 (αu10 + βu01) = E1ψ

Hence any superposition of degenerate eigenstates is also a degenerate eigenstate. This means we
can choose any relevant combinations that we wish, depending on the problem in hand. Note,
this is true of degenerate eigenstates for any operator, not just the Hamiltonian.

4 Angular momentum

In two dimensions, there is only one component of angular momentum

L = xpy − ypx

so angular momentum is a scalar, rather than a vector, in two dimensions. However, it is clear
this scalar is the equivalent of the Lz component in three dimensions. We want to look at the
QM operator, which is

L̂ = x̂p̂y − ŷp̂x = −ih̄x
∂

∂y
+ ih̄y

∂

∂x

Let’s see the effect of this operator on the u10 state for the case of ωx = ωy, when the potential is
central and so we expect angular momentum to be conserved. A reminder that the 1D solutions
are

u0 = Ae−ax2/2, u1 = Bxe−ax2/2

Hence, since ωx = ωy then the a constant is the same for x and y so

u10 =
(
Bxe−ax2/2

) (
Ae−ay2/2

)
= ABxe−a(x2+y2)/2

and similarly
u01 = ABye−a(x2+y2)/2

For u10, then
∂u10

∂x
= ABe−a(x2+y2)/2 −ABax2e−a(x2+y2)/2

while
∂u10

∂y
= −ABaxye−a(x2+y2)/2

Hence

L̂u10 = ih̄ABax2ye−a(x2+y2)/2 + ih̄ABye−a(x2+y2)/2 − ih̄ABax2ye−a(x2+y2)/2

= ih̄ABye−a(x2+y2)/2 = ih̄u01

Similarly
L̂u01 = −ih̄u10

This means neither u10 nor u01 are eigenstates of L̂, even though we would expect L to be
conserved classically. This seems to contradict our expectations. However, the above can be
written as

L̂u10 = ih̄u01, iL̂u01 = h̄u10
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Hence, adding these two equations gives

L̂u10 + iL̂u01 = h̄u10 + ih̄u01

L̂(u10 + iu01) = h̄(u10 + iu01)

Hence, u10+iu01 is an eigenstate of L̂ with eigenvalue h̄. Similarly, by subtracting the equations,
we get

L̂(u10 − iu01) = −h̄(u10 − iu01)

which means this combination is an eigenstate with eigenvalue −h̄. Remember, these states
are linear combinations of the u01 and u10 and so because of degeneracy are therefore also
eigenstates of energy. Hence, there are states which are indeed eigenstates of both energy and
angular momentum, as we would expect, and this means the two operators must be compatible.
It must be the case that [Ĥ, L̂] = 0 when ωx = ωy, as can be shown by direct calculation.

It is illustrative to look at this in terms of plane (circular) polar coordinates. For these, then

x = r cos φ, y = r sinφ

Consider ∂/∂φ, which is found by a standard calculation

∂

∂φ
=

∂x

∂φ

∂

∂x
+

∂y

∂φ

∂

∂y
= −r sinφ

∂

∂x
+ r cos φ

∂

∂y
= −y

∂

∂x
+ x

∂

∂y

Hence
L̂ = −ih̄

∂

∂φ

This looks intuitive; for the (linear) coordinate x, the (linear) momentum operator associated
with it is p̂ = −ih̄∂/∂x, while we have just found that for the angular coordinate φ, the associated
angular momentum operator is L̂ = −ih̄∂/∂φ. The eigenstates and eigenvalues of angular
momentum are easily found, exactly as for the linear momentum. Writing the eigenstate equation
as

−ih̄
dψ

dφ
= mlh̄ψ

so
dψ

ψ
= imlφ

so
ψ = C(r)eimlφ

where C(r) is any function of the radial coordinate r; it appears as the equivalent of a constant
of integration as it is not a function of φ.

Unlike for the momentum case, there is a boundary condition, namely that the eigenstate
has to be single-valued, i.e. adding 2π to φ must give the same state, so ψ(φ+2π) = ψ(φ). This
means

eiml(φ+2π) = eimlφeiml2π = eimlφ

so
eiml2π = 1

so this restricts ml to be an integer, which can be either positive or negative. This means angular
momentum eigenstates are discrete, not continuous.
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The L̂ eigenstates u10±iu01 found above had eigenvalues of ±h̄ and therefore must correspond
to ml = ±1. Explicitly

u10 ± iu01 = AB(x ± iy)e−a(x2+y2)/2 = AB(r cos φ ± ir sinφ)e−ar2/2

= ABr(cos φ ± i sinφ)e−ar2/2 = ABre−ar2/2e±iφ

which is exactly the form we found for ml = ±1.
Finally, let’s put in the time dependence explicitly; for an angular momentum eigenstate

C(r)eimlφe−iEt/h̄ = C(r)ei(h̄mlφ−Et)/h̄ = C(r)ei(Lφ−Et)/h̄

The r part does not depend on time and so is constant. The φ part looks just like our previous
travelling wave ei(px−Et)/h̄ except it is travelling in φ not x, i.e. it is going round in a circle,
either in the positive φ direction if ml > 0 or the negative φ direction if ml < 0. Hence, it
physically corresponds to waves circulating around the origin and hence to angular momentum.
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