In this question we can write the force as $F(t)=\frac{F_{0} t}{T}(U(t)-U(t-T))+$ $F_{0} U(t-T)=\frac{F_{0} t}{T} U(t)-\frac{F_{0}(t-T)}{T} U(t-T)$, again we will solve using DSLT.

1. Our equation is

$$
m \ddot{x}(t)+\gamma \dot{x}(t)+k x(t)=F(t)
$$

by DSLT:

$$
m S^{2} X(S)+\gamma S X(S)+k X(S)=\frac{F_{0}}{T}\left(\frac{1}{S^{2}}-\frac{e^{-T S}}{S^{2}}\right)
$$

Let's define $\alpha_{1}=\frac{-\gamma+\sqrt{\gamma^{2}-4 m k}}{2 m}$ and $\alpha_{2}=\frac{-\gamma-\sqrt{\gamma^{2}-4 m k}}{2 m}$ by algebraic manipulation:

$$
X(S)=\frac{F_{0}}{T}\left[\frac{1}{\left(S-\alpha_{1}\right)\left(S-\alpha_{2}\right)}\left(\frac{1}{S^{2}}-\frac{e^{-T S}}{S^{2}}\right)\right]
$$

let's define: $\hat{X}(S)=\frac{F_{0}}{T} \frac{1}{\left(S-\alpha_{1}\right)\left(S-\alpha_{2}\right)} \frac{1}{S^{2}}$
by inverse DSLT:

$$
\hat{x}(t)=\frac{F_{0} t}{T k}-\frac{F_{0} \gamma}{T k^{2}}+F_{0} \gamma e^{-\frac{\gamma t}{2 m}} \cdot y(t)
$$

where

$$
y(t)=\frac{\cosh \left(\frac{t \sqrt{\frac{\gamma^{2}}{4}-k m}}{m}\right)-m \sinh \left(\frac{t \sqrt{\frac{\gamma^{2}}{4}-k m}}{m}\right)\left(\frac{\gamma}{2 m}-\frac{F_{0} \gamma^{2}-F_{0} k m}{F_{0} \gamma m}\right)}{\frac{\sqrt{\frac{\gamma^{2}}{4}-k m}}{T k^{2}}}
$$

and we get

$$
x(t)=\hat{x}(t) U(t)-\hat{x}(t-T) U(t-T)
$$

