Solution of 1D problem
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By defining T(x,t) — Ty, = 6(x,t) , we get
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We assume a form of solution by focusing exclusively on the long-time solution when the

system has reached oscillatory steady state. So, the solution will take the following form.

0(x,t) = a(x) cos(wt) + b(x) sin(wt) + % (L—x)

Taking temporal and spatial derivative of equation (9), we get
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Applying equation (12) and (10) into equation (5), we get

—a(x)wsin(wt) + b(x)w cos(wt)
9%a(x)
0x?

2

0x?

=« cos(wt) + a sin(wt)

©)

(10)

(11)

(12)

(13)



At this point, we want to obtain the value of a(x) and b(x). To do that, we can separate the
coefficients of cos(wt) and sin(wt).
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We can imply b(x) value from equation (14) to (15), so that equation (15) becomes solely
dependent on a(x).
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This ordinary differential equation can be solved by taking complementary and particular
solution. But since this is also a homogeneous equation, particular solution will be zero. By
looking at the roots of characteristic polynomial, we can easily find the complementary solution

of this equation.
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We can eliminate b(x) ?? By considering b(x)=0;

From equation (9) and ((15), we get
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Applying second boundary condition,
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Taking the coefficient of cos(wt), we get
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By applying equation (22) in equation (18), and applying initial condition, we get

0(x,0) = [(Cz +%\/§)e_ %xcos <\/§x> + Cze_\/%xsin <\/§x>l
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Again, separating the coefficient of cos (\/% x) and sin (\/% x) we get
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From equation (25), we get
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Equation (18) turns out to be

0(x,t) = g\/ge_\/%xcos (\/%x) cos(wt) + % (L —x) (27)

By applying trigonometric rule

cos(A—B) + cos(A+ B)
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Equation (23) become
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The final solution
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