Solution of 1D problem

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}} \tag{1}
\end{equation*}
$$

IC

$$
\begin{equation*}
T(x, 0)=T_{0} \tag{2}
\end{equation*}
$$

BC

$$
\begin{equation*}
T(L, t)=T_{0} \tag{3}
\end{equation*}
$$

BC

$$
\begin{equation*}
\left.\frac{\partial T}{\partial x}\right|_{x=0}=-\frac{A}{\kappa}(\cos (w t)+1) \tag{4}
\end{equation*}
$$

By defining $T(x, t)-T_{0}=\theta(x, t)$, we get

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=\alpha \frac{\partial^{2} \theta}{\partial x^{2}} \tag{5}
\end{equation*}
$$

IC

$$
\begin{equation*}
\theta(x, 0)=0 \tag{6}
\end{equation*}
$$

BC

$$
\begin{equation*}
\theta(L, t)=0 \tag{7}
\end{equation*}
$$

BC

$$
\begin{equation*}
\left.\frac{\partial \theta}{\partial \mathrm{x}}\right|_{\mathrm{x}=0}=-\frac{A}{\kappa}(\cos (w t)+1) \tag{8}
\end{equation*}
$$

We assume a form of solution by focusing exclusively on the long-time solution when the system has reached oscillatory steady state. So, the solution will take the following form.

$$
\begin{equation*}
\theta(x, t)=a(x) \cos (\omega t)+b(x) \sin (\omega t)+\frac{A}{k}(L-x) \tag{9}
\end{equation*}
$$

Taking temporal and spatial derivative of equation (9), we get

$$
\begin{align*}
& \frac{\partial \theta}{\partial t}=-a(x) \omega \sin (\omega t)+b(x) \omega \cos (\omega t) \tag{10}\\
& \frac{\partial \theta}{\partial x}=\frac{d a(x)}{d x} \cos (\omega t)+\frac{d b(x)}{d x} \sin (\omega t)+\frac{A}{k} \tag{11}\\
& \frac{\partial^{2} \theta}{\partial x^{2}}=\frac{\partial^{2} a(x)}{\partial x^{2}} \cos (\omega t)+\frac{\partial^{2} b(x)}{\partial x^{2}} \sin (\omega t) \tag{12}
\end{align*}
$$

Applying equation (12) and (10) into equation (5), we get

$$
\begin{align*}
-a(x) \omega \sin (\omega t) & +b(x) \omega \cos (\omega t) \\
= & \alpha \frac{\partial^{2} a(x)}{\partial x^{2}} \cos (\omega t)+\alpha \frac{\partial^{2} b(x)}{\partial x^{2}} \sin (\omega t) \tag{13}
\end{align*}
$$

At this point, we want to obtain the value of $\mathrm{a}(\mathrm{x})$ and $\mathrm{b}(\mathrm{x})$. To do that, we can separate the coefficients of $\cos (\omega t)$ and $\sin (\omega t)$.

$$
\begin{gather*}
\alpha \frac{\partial^{2} a(x)}{\partial x^{2}}=b(x) \omega \tag{14}\\
\alpha \frac{\partial^{2} b(x)}{\partial x^{2}}=-a(x) \omega \tag{15}
\end{gather*}
$$

We can imply $b(x)$ value from equation (14) to (15), so that equation (15) becomes solely dependent on $a(x)$.

$$
\begin{equation*}
\frac{\partial^{4} a(x)}{\partial x^{4}}+\left(\frac{\omega}{\alpha}\right)^{2} a(x)=0 \tag{16}
\end{equation*}
$$

This ordinary differential equation can be solved by taking complementary and particular solution. But since this is also a homogeneous equation, particular solution will be zero. By looking at the roots of characteristic polynomial, we can easily find the complementary solution of this equation.

$$
\begin{equation*}
a(x)=C_{1} e^{-\sqrt{\frac{\omega}{\alpha}} x} \cos \left(\sqrt{\frac{\omega}{\alpha}} x\right)+C_{2} e^{-\sqrt{\frac{\omega}{\alpha}} x} \sin \left(\sqrt{\frac{\omega}{\alpha}} x\right) \tag{17}
\end{equation*}
$$

We can eliminate $b(x)$?? By considering $b(x)=0$;
From equation (9) and ((15), we get

$$
\begin{gather*}
\theta(x, t)=\left[C_{1} e^{-\sqrt{\frac{\omega}{\alpha}} x} \cos \left(\sqrt{\frac{\omega}{\alpha}} x\right)+C_{2} e^{-\sqrt{\frac{\omega}{\alpha}} x} \sin \left(\sqrt{\frac{\omega}{\alpha}} x\right)\right] \cos (\omega t) \\
+\frac{A}{k}(L-x) \tag{18}
\end{gather*}
$$

Applying second boundary condition,

$$
\begin{align*}
\frac{\partial \theta(x, t)}{\partial \mathrm{x}}=[- & \sqrt{\frac{\omega}{\alpha}} C_{1} e^{-\sqrt{\frac{\omega}{\alpha}} x}\left[\sin \left(\sqrt{\frac{\omega}{\alpha}} x\right)\right. \\
& \left.+\cos \left(\sqrt{\frac{\omega}{\alpha}} x\right)\right]-\sqrt{\frac{\omega}{\alpha}} C_{2} e^{-\sqrt{\frac{\omega}{\alpha}} x}\left[\sin \left(\sqrt{\frac{\omega}{\alpha}} x\right)\right. \tag{19}\\
& \left.\left.-\cos \left(\sqrt{\frac{\omega}{\alpha}} x\right)\right]\right] \cos (\omega t)+\frac{A}{k}
\end{align*}
$$

At $x=0$

$$
\begin{equation*}
-\frac{A}{\kappa}(\cos (w t)+1)=\left[-\sqrt{\frac{\omega}{\alpha}} C_{1}-\sqrt{\frac{\omega}{\alpha}} C_{2}\right] \cos (\omega t)+\frac{A}{k} \tag{20}
\end{equation*}
$$

Taking the coefficient of $\cos (\omega t)$, we get

Or,

$$
\begin{align*}
& \left(C_{1}-C_{2}\right) \sqrt{\frac{\omega}{\alpha}}=-\frac{A}{\kappa} \tag{21}\\
& \left(C_{1}-C_{2}\right)=-\frac{A}{\kappa} \sqrt{\frac{\omega}{\alpha}} \tag{22}
\end{align*}
$$

By applying equation (22) in equation (18), and applying initial condition, we get

$$
\begin{gather*}
\theta(x, 0)=\left[\left(C_{2}+\frac{A}{\kappa} \sqrt{\frac{\omega}{\alpha}}\right) e^{-\sqrt{\frac{\omega}{\alpha}} x} \cos \left(\sqrt{\frac{\omega}{\alpha}} x\right)+C_{2} e^{-\sqrt{\frac{\omega}{\alpha}} x} \sin \left(\sqrt{\frac{\omega}{\alpha}} x\right)\right] \\
+\frac{A}{k}(L-x)=0 \tag{23}
\end{gather*}
$$

Again, separating the coefficient of $\cos \left(\sqrt{\frac{\omega}{\alpha}} x\right)$ and $\sin \left(\sqrt{\frac{\omega}{\alpha}} x\right)$, we get

$$
\begin{gather*}
\left(C_{2}+\frac{A}{\kappa} \sqrt{\frac{\omega}{\alpha}}\right) e^{-\sqrt{\frac{\omega}{\alpha}} x}=0 \tag{24}\\
C_{2} e^{-\sqrt{\frac{\omega}{\alpha}} x}=0 \tag{25}
\end{gather*}
$$

From equation (25), we get

$$
\begin{equation*}
C_{2}=0, \text { since } e^{-\sqrt{\frac{\omega}{\alpha}} x} \neq 0 \tag{26}
\end{equation*}
$$

Equation (18) turns out to be

$$
\begin{equation*}
\theta(x, t)=\frac{A}{\kappa} \sqrt{\frac{\omega}{\alpha}} e^{-\sqrt{\frac{\omega}{\alpha}} x} \cos \left(\sqrt{\frac{\omega}{\alpha}} x\right) \cos (\omega t)+\frac{A}{k}(L-x) \tag{27}
\end{equation*}
$$

By applying trigonometric rule

$$
\begin{equation*}
\cos (\mathrm{A}) \cos (\mathrm{B})=\frac{\cos (A-B)+\cos (A+B)}{2} \tag{28}
\end{equation*}
$$

Equation (23) become

$$
\begin{gather*}
\theta(x, t)=\frac{1}{2} \frac{A}{\kappa} \sqrt{\frac{\omega}{\alpha}} e^{-\sqrt{\frac{\omega}{\alpha}} x} \cos \left(\omega t-\sqrt{\frac{\omega}{\alpha}} x\right) \cos \left(\omega t+\sqrt{\frac{\omega}{\alpha}} x\right) \tag{29}\\
+\frac{A}{k}(L-x)
\end{gather*}
$$

Somehow, $\cos \left(\omega t+\sqrt{\frac{\omega}{\alpha}} x\right)$ become zero??
The final solution

$$
\begin{equation*}
\theta(x, t)=\frac{1}{2} \frac{A}{\kappa} \sqrt{\frac{\omega}{\alpha}} e^{-\sqrt{\frac{\omega}{\alpha}} x} \cos \left(\omega t-\sqrt{\frac{\omega}{\alpha}} x\right)+\frac{A}{k}(L-x) \tag{30}
\end{equation*}
$$

