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Abstract

Symmetry plays an essential role in scientific thinking. When faced with
a problem, the mind often tries symmetric solution. It also picks such solu-
tion when there are alternatives. Thus, symmetry plays a methodological
role in acquiring scientific knowledge. In this article, we try to explain how
symmetries inter naturally into the structure of our theories, and reveal its
consequences.

Virtually all theorists agree that justified-true-belief is a necessary and sufficient
condition for knowledge. Therefore, one can proceed to define science in general, and
physics in particular, to be a mathematical representation of our knowledge about the
universe. Thus, we can say that physics is based upon the assumption that nature
can be understood mathematically. And implicit in that assumption is our belief
that nature is not arbitrary, but that it evolves according to definite (mathematical)
laws. What does mathematics has to do with it? Even though we do not expect a
definite answer to this question, we may reason as follow: Mans position in nature
determines his profound understanding of the universe. Our (scientific) conceptual
framework seems to presuppose abstract entities- counting, for example, requires
the set of positive integers- All relations between us and the world are in such a
way that we have to destroy our earlier clear-cut (particular) picture about nature
in order to grasp universal (general) concepts which often are of abstract nature-
Newton introduced the point-mass concept in his laws of motion and Einstein had
to introduce curved space-time into his general relativity- Now, since mathematics
is about a realm of abstract objects, therefore its role in virtually every science is
inevitable.
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Having said all this, we still have to distinguish between the pure mathematical
reasoning and the usually employed physical reasoning. Mathematical reasoning
consists of definite logical rules on adopted (i.e. arbitrary) system of definitions and
axioms. The process of mathematical deduction contains no further information
other than those in the initial system of definitions and axioms. And mathematical
assertions are valid for the abstract objects introduced by means of the definitions.
However, if a correspondence has been established between these objects and real
(physical) objects such that a mathematical structure, under certain conditions, gives
a correct description of the behavior of physical objects, then we say that a physical
realization of that mathematical structure has been found.

Since physics describes events occurring in space and time, the best description
can be achieved by representing our space and time by an appropriate mathematical
structure which involves as few assumptions as possible. The mathematical structure
which has proved to be a good starting point is the so called differentiable manifold.
In general, n-Manifold is a topological space which is locally homeomorphic to the
n-dimensional real vector space . Local homeomorphism enables us to associate a
set of n numbers, called the local coordinates, to each point of the manifold. In a
local coordinate system, every point on the manifold must have unique coordinates
and nearby points have nearby coordinates. So, we can think of the manifold as a
collection of points, each of which will eventually correspond to a unique position in
space and time and the entire collection represents the history of our universe. If
the manifold is not homeomorphic to Rn globally, we have to introduce several over-
lapping coordinate systems, each covering a part of the manifold. Therefore, in the
overlapping region, it is possible for a single point to have two or more coordinates.
However, differentiability of functions must be preserved in all coordinate systems.
Thus, we need a smooth transition (transformation) from one coordinate system to
another. This allows us to describe physical events and quantities in terms of space
and time changes of some differentiable functions (fields). Of course, we do not know
for certain that space and time are as smooth as the manifold itself, but at least
there is no evidence for any discreteness down to the smallest scale we are able to
probe experimentally.

Now that we have modelled space and time by n-manifold, we realize that the
class of mathematically permitted manifolds is too big for all physical purposes and
that smoothness and other topological features do not help narrowing down our
choices. So, one must present physical arguments for eliminating as many classes of
bad manifolds as one possibly can:
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1. One would perhaps not want to admit a space-time manifold with closed time-
like curves as this would violate causality. If one chooses a time-oriented n-
manifold, one can establish directionality to the time coordinate and foliate
the whole space-time into stacks of space-like hypersurfaces (Cauchy surfaces).
Events on each Cauchy surface cannot influence each other, and evolve indepen-
dently along a global time coordinate. Information on a single Cauchy surface
(i.e. suitable initial conditions) is sufficient to determine the subsequent state
of the system in space-time. Thus, causality requires the space-time to be an
oriented smooth n-manifold.

2. Topologically, this Mn is the product of a space-like (n -1)-manifold Σn−1 and
the time-like 1-manifold R.

3. One would use the physical notion of distinct events to exclude (non-Hausdorff)
manifolds in which there are two points which cannot be separated by disjoint
neighbourhoods.

4. Separate connected regions in space-time should be able to communicate. There-
fore, one would want to exclude non-connected manifolds.

5. Our space-time manifold must admit a metric of Lorentz signature. Some com-
pact connected manifold do possess such metric, but compact manifolds also
have closed timelike curves mixing past and future. And, since paracompact
manifold does admit a metric of Lorentz signature, one needs to exclude non-
paracompact manifold (i.e. manifold in which some connected component can-
not be covered by a countable collection of coordinate systems).

6. Since space-time has no edge (at least we have not seen an edge), one would
exclude bounded manifold.

The conclusion from all these arguments, then, is that space and time can be mod-
elled by a smooth oriented n-manifold with unbounded, connected, paracompact and
Hausdroff included in the term manifold.
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Theoretical physics is characterized by the use of mathematical models , measur-
able quantities and fundamental principles to describe, understand and predict the
behaviour of physical objects. The merit of a physical theory lies not just in its
ability to explain observed phenomena, but also to predict a new one. To construct
a physical theory by deductive manner, one must form a general set of concepts
whose introduction is suggested by the observed phenomena; limit the range of ap-
plication of these concepts by some sort of fundamental principles and show that
the limited concepts, together with the mathematical relations between them, form
a self-consistent scheme.

By observing nature, an ambiguous interaction takes place between man and the
world outside. Mysteriously this process enables conscious observer to build a system
of qualitative concepts whose nature is independent of the existence of such observer
and his intervention during the act of observation. However, it is almost always
possible to provide these concepts with quantitative features which bear the signs
of different procedures of experimental study of physical objects. Thus, from the
mathematical point of view, we must expect that our concepts are ill-defined.

The main function of any theory is to provide us with useful information about the
world. This means that the theory must contain a number of elements which turn it
into a meaningful language. In particular, there must be constant as well as variable
elements, as a characteristic objects, in the theory. The simplest way of obtaining
information can be achieved by means of experimental study which consists of frames
of reference (or instruments) by means of which a well-defined measuring procedure
is implemented. An experimental study will be possible (i.e. reproduces the results)
provided that we choose a class of equivalent frames of reference to work with. In
principle, an equivalence relation (between reference frames) can be established if,
and only if, the observers: 1) are in well-defined state of motion, and 2) agree on a
standard scale for length, time and mass. Regardless of how the equivalence of the
frames is realized in practice, the equivalence relation has the structure of a group.
Thus, any physical theory must contain, as an axiom, some symmetry principle
defined by a group of transformations acting on the elements of the theory. In
a class of equivalent frames with respect to a given group of transformations, the
symmetry group can be used to translate observations made in one frame to any
other frame reached by the transformations. This defines a principle of relativity
which asserts that the laws of physics are the same for all equivalent observers, i.e.
the equations of motion must be covariant (form-invariant) under the action of the
symmetry group. This, in turn, determines the results which dont depend on the
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choice of the frame of reference. Therefore, the above-mentioned constant elements of
the theory can be obtained in terms of the set of all invariant (Casmirs) operators of
the given symmetry group. Thus, one expects that possible motion and interaction
will be severely restricted by the values of these invariant operators. Indeed, all
kinematical and dynamical properties of a given physical system are determined in
terms of the set of all invariant operators associated with all possible symmetries
of the system. That is to say that the collection of states of the system forms a
manifold characterized by the values of the invariant operators. This manifold is also
called the representation space of the symmetry group. For example, the manifold of
(quantum) states for a particle can be labelled by the mass of the particle, the spin
of the particle and certain other invariant parameters such as the electric and colour
charge. In some sense, physics is very much similar to Klein’s geometry where all
properties of geometrical objects are determined by sets of invariants of the global
symmetry group of the space.

With respect to the symmetry group of the theory, quantities with certain trans-
formation laws can be identified with the variable elements of the physical theory.
Obviously, they depend on the choice of the frame of reference. However, locally in-
variant combinations can always be constructed out of them. This in turn determines
the locally measurable quantities. Thus, as advertised, the principles of symmetry
and invariance limit the range of basic physical concepts and determine the structure
of dynamical quantities in the physical theory.

Symmetry groups and their invariants provide, at the same time, good theoretical
description of the experimental instruments. Therefore, there must be a room for the
properties of the instruments in the axiomatic structure of our theory. Conversely,
the choice of the instruments and procedures of an experiment predetermines the
symmetry group of the theory describing the given experiment. Similar situation
also exists in geometry. Indeed, physics and geometry share the same property
regarding the relationship between theoretical and experimental ways of looking at
the world.

The principles of special relativity, for example, deform and prevent the concept
of a rigid body from being rigid. The deformation of rigid body leads us to the
idea of describing extended objects by differentiable functions, i.e. fields over space-
time. However, not every field represents an extended physical object. Again, this
is because of the same relativity principles which limit the set of fields to those
with definite transformation laws with respect to the Lorentz group. This way, the
fields will describe the same physics in all frames of reference reached by the Lorentz
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transformations. Thus, physical field must carry a representation of the Lorentz
group, i.e. it must be labelled by Lorentz invariant parameters (mass and spin).

Under the same relativity principles, to be elementary, the elementary particle
must be structureless (mathematical) point with certain physical properties. How-
ever, this definition is not perfect because it brings about the problem of divergence
and prevent the particle from having angular momentum of its own. The appear-
ance of divergent quantities in a self-consistent theory (roughly) defines the scale at
which the theory loses its predictive power and calls for a new theory. For example,
the relativistic invariance of classical electrodynamics implies that the electron must
be treated as a point-like charge in classical electrodynamics (indeed, down to dis-
tances of the order of 10−15cm, scattering experiments on electrons show no evidence
of structure or extension). However, point-like electron in classical electrodynamics
leads to divergent electrostatic self-energy (u = e2/r → ∞, as r → 0) and, therefore,
an infinite electron mass (m = u/c2 → ∞). This absurd result means that classical
electrodynamics breaks down at short distances and, therefore has little or no rel-
evance to the real world of electrons and other charged elementary particles. But,
how short is that “short distances”? An estimate can be obtained by comparing the
electron rest energy, mc2, with the electrostatic energy of an extended classical distri-
bution of charge totaling the electronic charge, e2/R. Thus, we conclude that classical
electrodynamics breaks down at distances of the order of R ∼ e2/mc2 ∼ 10−13cm.
However, this unreal picture of the world (without point-like elementary particles)
disappears at distances two order of magnitude higher. Indeed, we know that quan-
tum electrodynamics, which is a unified description of particles and fields, become
necessary at distances of the order of ~/mc ∼ 137R ∼ 10−11cm.

We may now say that any consistent physical theory can be formulated in terms
of the appropriate principles of symmetry and invariance. These are what we called
earlier “fundamental principles”. Using these principles, it is almost always possible
to turn an abstract mathematical structure into useful apparatus. The main ob-
jective of any such apparatus is to describe the dynamics of physical systems, i.e.
the differential equations of motion and the set of all conserved quantities. Self-
consistency of the scheme is proved by showing that the symmetry is not violated on
the dynamical level and this leads to the remarkable fact that the conserved quanti-
ties form a representation of the Lie algebra of the symmetry group. The equations
of motion can be obtained by the following steps:

1. The dynamical variables of the system are represented by continuous (may
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be complex) functions (fields) on the n-dimensional space-time manifold Mn,

φr(t,−→x ) ∈ C∞(Mn,Cr), and their derivatives to a finite order, ∂aφr, ∂a∂bφr, · · ·,
we assume that the fields φr and their derivatives vanish sufficiently fast as
|⃗x| → ∞.

2. The invariance or covariance (i.e, the transformation laws) of these variables
with respect to the symmetry group provides sufficient information to construct
a real scalar function, L : Cr × Cnr × · · · → R, called the Lagrangian of the
system, L(x) = L(φr(x), ∂aφr(x), · · ·). On the other hand, given L, certain
criteria for the symmetry can be defined (see below).

3. The whole dynamics then rests on the statement

δ

ˆ
Ω⊂Rn

dnx L(x) = 0.

This is an expression of general behaviour in nature. The vanishing variation
of the action (or the principle of least action) is one of the most fundamental
achievements of theoretical thought. Since the time of Hamilton, practically all
observed phenomena have been described by equations shown to be the conse-
quences of a similar principle. The equations of motion follow by assuming that
the variations of the fields, δφr, vanish at the boundary, ∂Ω, of some space-time
domain Ω but arbitrary elsewhere. Various type of conserved quantities (de-
pending on the symmetry group) can be then constructed when the dynamical
variables satisfy the equations of motion.

If, by using only the transformation laws of the fields (i.e. without the use of the
equations of motion), the Lagrangian changes according to

δL = ∂a Λ
a
α(φr),

where Λa
α(φr) are some functions of the fields φa and α is a group index, then the

action integral is unaffected (because the fields vanish on the boundary):

δ

(ˆ
Ω

dnxL
)

=

ˆ
Ω

dnx ∂aΛ
a
α =

ˆ
∂Ω

dσa Λ
a
α(φ) = 0,

and the transformation is a symmetry transformation. Two situations are now distin-
guished: if Λa

α = 0, we say that we are dealing with an internal symmetry; otherwise
we have a space-time symmetry. When the fields satisfy the equations of motion, it
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is always true that

δL = ∂a

(
∂L

∂ (∂aφr)
δαφr

)
.

Thus, the symmetry implies that the object (Noether current)

Ja
α ≡ Λa

α − ∂L
∂ (∂aφr)

δαφr,

satisfies a continuity (conservation) equation, ∂aJ
a = 0, and allows us to define

time-independent quantities, Qα, (charges) by the integral

Qα =

ˆ
dn−1x J0

α.

Then, our home work is to show that these charges have the following properties:

1. They define a set of Constants of motion,

d

dt
Qα = 0.

2. They transform covariantly with respect to the symmetry group,

δAQα = (MA)α
β Qβ,

where MA are the generator of the symmetry group in the fundamental repre-
sentation.

3. They generate the correct transformations on the fields,

δαφs(x) = [iQα, φs(x)].

4. They satisfy the Lie algebra of the symmetry group,

[Qα, Qβ] = iCαβ
γQγ.

To describe the behaviour of a given system, the equations of motion need to be
solved. To do this it is necessary to design a theoretical model of the system by
setting up initial or boundary conditions, otherwise the solutions would have a great
degree of generality. Fortunately, given a physical system, it is possible to identify a
set of initial conditions, and given these same conditions, the resulting state (motion)
of the system will be same and independent of where and when these conditions are
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realized. That is, the possible states of the system are independent of the space-
time location of the observer, i.e. space-time is homogeneous. In the language
of symmetry, this is equivalent to the statement that the equations of motion are
covariant with respect to the group of translations xa → x̄a = xa+ ca by a constants
ca. Space is also isotropic: it is an experimental fact that the orientations of an
event is another irrelevant initial condition. Thus, the equations of motion must be
covariant with respect to spatial rotations. Experiments have also revealed the fact
that light signals travel with same speed and pay no attention to the observer’s state
of motion. Maxwell’s theory indicates that the motion of an observer, as long as it is
uniform with constant velocity, is likewise an irrelevant initial condition. Putting all
of the above together, we arrive at the principle of relativistic invariance which states
that two observers moving with constant relative velocity will see the same physics.
More precisely, the equations of motion (laws of nature) are covariant with respect
to the Poincare group of transformations, x̄a = Λa

b x
b+ ca, where the transformation

matrix Λa
b depends on six parameters representing three rotation angles and three

boosts. Two systems of coordinate related by Poincare transformation are said to be
equivalent.

Conclusions

Finally, let us summaries our conclusions by saying that any consistent physical
theory must satisfy the following conditions:

1. There should be a symmetry transformations, and all the frames which are
connected by these transformations are equally good for the description of a
given system: they define equivalent observers.

2. Equivalent observers should be able to communicate, i.e. there should be definite
rules transform the dynamical variables of a given system from one reference
frame to any equivalent frame. This is equivalent to the mathematical problem
of finding all representations of the symmetry group.

3. Translating a physically possible situation should also be physically possible, i.e.
a possible motion in one system should again appear possible in any equivalent
coordinate system. That is to say that equivalent observers should make the
same prediction regarding the outcome of an experiment carried out on a given
system.
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4. Condition (3) above should be identical for all equivalent observers, i.e. the
equations of motion should have the same form in all equivalent coordinate
systems.

For example, if we take the Lorentz transformation, x̄a = Λa
b x

b, to be the symmetry
transformation, then condition (2) implies that the fields transform according to

φ̄r(x̄) = Dr
s(Λ)φs(x),

with D(Λ) = I, if Λ is the identity transformation. Acting on the finite dimensional
vector space of the dynamical variables φr , r = 1, 2, · · · p, D(Λ) is a definite non-
singular matrix representation of the Lorentz group SO(1, n−1), i.e. D(Λ) preserves
the group multiplication law

D(Λ1)D(Λ2) = D(Λ1Λ2).

Condition (3) then says that if φ(x) describes a possible physical situation, then
D(Λ)φ(x), which is the possible situation as seen by the observer in x̄ − system, is
also a possible situation in the “original” x−system. And finally, condition (4) asserts
that D(Λ) depends only on the relation between the two coordinate systems and not
on the intrinsic properties of either one.

10


