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Lecture 1B – Systems 
Differential equations. System modelling. Discrete-time signals and systems. 
Difference equations. Discrete-time block diagrams. Discretization in time of 
differential equations. Convolution in LTI discrete-time systems. Convolution 
in LTI continuous-time systems. Graphical description of convolution. 
Properties of convolution. Numerical convolution. 

Linear Differential Equations with Constant Coefficients 

Modelling of real systems involves approximating the real system to such a 

degree that it is tractable to our mathematics. Obviously the more assumptions 

we make about a system, the simpler the model, and the more easily solved. 

The more accurate we make the model, the harder it is to analyse. We need to 

make a trade-off based on some specification or our previous experience. 

A lot of the time our modelling ends up describing a continuous-time system 

that is linear, time-invariant (LTI) and finite dimensional. In these cases, the 

system is described by the following equation: 
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Initial Conditions 

The above equation needs the N initial conditions: 

( ) ( ) ( ) ( ) ( )−−−− 0 , ,0 ,0 11 Nyyy K  
(1B.3) 

We take −0  as the time for initial conditions to take into account the possibility 

of an impulse being applied at 0=t , which will change the output 

instantaneously. 

Linear differential 
equation 
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First-Order Case 

For the first order case we can express the solution to Eq. (1B.1) in a useful 

(and familiar) form. A first order system is given by: 
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(1B.4) 

To solve, first multiply both sides by an integrating factor equal to ate . This 

gives: 
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Thus: 
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(1B.6) 

Integrating both sides gives: 

( ) ( ) ( ) 0,0
0

≥=− ∫ −

− tdbxeytye
t aat τττ

 

(1B.7) 

Finally, dividing both sides by the integrating factor gives: 
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(1B.8) 

Use this to solve the simple revision problem for the case of the unit step. 

The two parts of the response given in Eq. (1B.8) have the obvious names 

zero-input response (ZIR) and zero-state response (ZSR). It will be shown later 

that the ZSR is given by a convolution between the system’s impulse response 

and the input signal. 

First-order linear 
differential equation 

First glimpse at a 
convolution integral 
– as the solution of 
a first-order linear 
differential equation 
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System Modelling 

In modelling a system, we are nearly always after the input/output relationship, 

which is a differential equation in the case of continuous-time systems. If we’re 

clever, we can break a system down into a connection of simple components, 

each having a relationship between cause and effect. 

Electrical Circuits 

The three basic linear, time-invariant relationships for the resistor, capacitor 

and inductor are respectively: 
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(1B.9b) 

 

(1B.9c)  

Mechanical Systems 

In linear translational systems, the three basic linear, time-invariant 

relationships for the inertia force, damping force and spring force are 

respectively: 
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(1B.10b) 
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Where ( )tx  is the position of the object under study. 

Cause / effect 
relationships for 
electrical systems 

Cause / effect 
relationships for 
mechanical 
translational 
systems 
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For rotational motion, the relationships for the inertia torque, damping torque 

and spring torque are: 

( ) ( )

( ) ( )

( ) ( )tktF
dt

td
ktF

dt

td
ItF

s

d

θ

θ

θ

=

=

=
2

 

(1B.11a) 

 

(1B.11b) 

 

(1B.11c) 

Finding an input-output relationship for signals in systems is just a matter of 

applying the above relationships to a conservation law: for electrical circuits it 

is one of Kirchhoff’s laws, in mechanical systems it is D’Alembert’s principle. 

Discrete-time Systems 

A discrete-time signal is one that takes on values only at discrete instants of 

time. Discrete-time signals arise naturally in studies of economic systems – 

amortization (paying off a loan), models of the national income (monthly, 

quarterly or yearly), models of the inventory cycle in a factory, etc. They arise 

in science, eg. in studies of population, chemical reactions, the deflection of a 

weighted beam. They arise all the time in electrical engineering, because of 

digital control eg. radar tracking system, processing of electrocardiograms, 

digital communication (CD, mobile phone, Internet). Their importance is 

probably now reaching that of continuous-time systems in terms of analysis 

and design – specifically because today signals are processed digitally, and 

hence they are a special case of discrete-time signals. 

It is now cheaper and easier to perform most signal operations inside a 

microprocessor or microcontroller than it is with an equivalent analog 

continuous-time system. But since there is a great depth to the analysis and 

design techniques of continuous-time systems, and since most physical systems 

are continuous-time in nature, it is still beneficial to study systems in the 

continuous-time domain. 

Cause / effect 
relationships for 
mechanical 
rotational systems 

Discrete-time 
systems are 
important… 

…especially as 
microprocessors 
play a central role in 
today’s signal 
processing 
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Linear Difference Equations with Constant Coefficients 

Linear, time-invariant, discrete-time systems can be modelled with the 

difference equation: 
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Solution by Recursion 

We can solve difference equations by a direct numerical procedure. 

There is a MATLAB® function available for download from the Signals and 

Systems web site called recur that solves the above equation. 

Complete Solution 

By solving Eq. (1B.12) recursively it is possible to generate an expression for 

the complete solution [ ]ny  in terms of the initial conditions and the input [ ]nx . 

First-Order Case 

Consider the first-order linear difference equation: 

[ ] [ ] [ ]nbxnayny =−+ 1  
(1B.13) 

with initial condition [ ]1−y . By successive substitution, show that: 
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Linear time-invariant 
(LTI) difference 
equation 

First-order linear 
difference equation 
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From the pattern, it can be seen that for 0≥n , 

[ ] ( ) [ ] ( ) [ ]∑
=

−+ −+−−=
n

i

inn ibxayany
0

1 1
 

(1B.15) 

This solution is the discrete-time counterpart to Eq. (1B.8). 

Discrete-Time Block Diagrams 

An LTI discrete-time system can be represented as a block diagram consisting 

of adders, gains and delays. The gain element is shown below: 

 

x  n[  ] y  n[  ] A=
A

x  n[  ]

 

 

Figure 1B.1 

The unit-delay element is shown below: 

 

x  n[  ] y  n[  ] x  n[     ]-1=
D

 

 

Figure 1B.2 

Such an element is normally implemented by the memory of a computer, or a 

digital delay line. 

First look at a 
convolution 
summation – as the 
solution of a first-
order linear 
difference equation 

A discrete-time gain 
element 

A discrete-time unit-
delay element 
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Example 

Using these two elements and an adder, we can construct a representation of 

the discrete-time system given by [ ] [ ] [ ]nbxnayny =−+ 1 . The system is shown 

below: 

x  n[  ]

D

b

a

y  n[  ]

y  n[     ]-1

 

Discretization in Time of Differential Equations 

Often we wish to use a computer for the solution of continuous-time 

differential equations. We can: if we are careful about interpreting the results. 

First-Order Case 

Let’s see if we can approximate the first-order linear differential equation 

given by Eq. (1B.4) with a discrete-time equation. We can approximate the 

continuous-time derivative using Euler’s approximation, or forward difference: 
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If T is suitably small and ( )ty  is continuous, the approximation will be 

accurate. Substituting this approximation into Eq. (1B.4) results in a discrete-

time approximation given by the difference equation: 

[ ] ( ) [ ] [ ]111 −+−−≈ nbTxnyaTny  
(1B.17) 

The discrete values [ ]ny  are approximations to the solution ( )nTy . 

Show that [ ]ny  gives approximate values of the solution ( )ty  at the times 

nTt =  with arbitrary initial condition [ ]1−y  for the special case of zero input. 

Approximating a 
derivative with a 
difference 

The first-order 
difference equation 
approximation of a 
first-order differential 
equation 
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Second-order Case 

We can generalize the discretization process to higher-order differential 

equations. In the second-order case the following approximation can be used: 
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Now consider the second-order differential equation: 

( ) ( ) ( ) ( ) ( )txb
dt

tdx
btya

dt

tdy
a

dt

tyd
01012

2

+=++  

 

(1B.19) 

Show that the discrete-time approximation to the solution ( )ty  is given by: 
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(1B.20) 

 

The second-order 
difference equation 
approximation of a 
second-order 
derivative 

An nth-order 
differential equation 
can be 
approximated with 
an nth-order 
difference equation 
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Convolution in Linear Time-invariant Discrete-time Systems 

Although the linear difference equation is the most basic description of a linear 

discrete-time system, we can develop an equivalent representation called the 

convolution representation. This representation will help us to determine 

important system properties that are not readily apparent from observation of 

the difference equation.  

One advantage of this representation is that the output is written as a linear 

combination of past and present input signal elements. It is only valid when the 

system’s initial conditions are all zero. 

First-Order System 

We have previously considered the difference equation: 

[ ] [ ] [ ]nbxnayny =−+ 1  
(1B.21) 

and showed by successive substitution that: 
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By the definition of the convolution representation, we are after an expression 

for the output with all initial conditions zero. We then have: 
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(1B.23) 

In contrast to Eq. (1B.21), we can see that Eq.  

(1B.23) depends exclusively on present and past values of the input signal. One 

advantage of this is that we may directly observe how each past input affects 

the present output signal. For example, an input [ ]ix  contributes an amount 

( ) [ ]ibxa in−−  to the totality of the output at the nth period. 

Linear difference 
equation 

The complete 
response 

The zero-state 
response (ZSR) – a 
convolution 
summation 
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Unit-Pulse Response of a First-Order System 

The output of a system subjected to a unit-pulse response [ ]nδ  is denoted [ ]nh  

and is called the unit-pulse response, or weighting sequence of the discrete-

time system. It is very important because it completely characterises a system’s 

behaviour. It may also provide an experimental or mathematical means to 

determine system behaviour. 

For the first-order system of Eq. (1B.21), if we let [ ] [ ]nnx δ= , then the output of the 

system to a unit-pulse input can be expressed using Eq.  

(1B.23) as: 
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(1B.24) 

which reduces to: 

[ ] ( ) bany n−=  
(1B.25) 

The unit-pulse response for this system is therefore given by: 

[ ] ( ) [ ]nbuanh n−=  
(1B.26) 

General System 

For a general linear time-invariant (LTI) system, the response to a delayed 

unit-pulse [ ]in −δ  must be [ ]inh − . 

Since [ ]nx  can be written as: 

[ ] [ ] [ ]∑
∞

=

−=
0i

inixnx δ
 

 

(1B.27) 

 

A discrete-time 
system’s unit-pulse 
response defined 

A first-order 
discrete-time 
system’s unit-pulse 
response 
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and since the system is LTI, the response [ ]nyi  to [ ]inix −δ][  is given by: 

[ ] [ ] [ ]inhixnyi −=  
(1B.28) 

The response to the sum Eq.  

(1B.27) must be equal to the sum of the [ ]nyi  defined by Eq. (1B.28). Thus the 

response to [ ]nx  is: 
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(1B.29) 

This is the convolution representation of a discrete-time system, also written 

as: 

[ ] [ ] [ ]nxnhny *=  
(1B.30) 

Graphically, we can now represent the system as: 

 

[  ]x  n [  ]y  n
[  ]h  n

 

 

Figure 1B.3 

It should be pointed out that the convolution representation is not very efficient 

in terms of a digital implementation of the output of a system (needs lots more 

memory and calculating time) compared with the difference equation. 

Convolution is commutative which means that it is also true to write: 

[ ] [ ]∑
∞

=

−=
0

][
i

inxihny
 

 

(1B.31) 

Convolution 
summation defined 
for a discrete-time 
system 

Convolution notation 
for a discrete-time 
system 

Graphical notation 
for a discrete-time 
system using the 
unit-pulse response 
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Discrete-time convolution can be illustrated as follows. Suppose the unit-pulse 

response is that of a filter of finite length k. Then the output of such a filter is: 

[ ] [ ] [ ]

[ ]

[ ] [ ] [ ] [ ] [ ] [ ]knxkhnxhnxh

inxih

nxnhny

i

−++−+=
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(1B.32) 

Graphically, this summation can be viewed as two buffers, or arrays, sliding 

past one another. The array locations that overlap are multiplied and summed 

to form the output at that instant. 

 

fixed array

xn-5xn-4xn-3xn-2xn-1xn

h5h4h3h2h1h0

sliding array

future input
signal values

past input signal values

present input
signal value

+ h5h4h3h2h0 xn-5xn-4xn-3xn-2xn-1xn= + + ++h1yn  

 

Figure 1B.4 

In other words, the output at time n is equal to a linear combination of past and 

present values of the input signal, x. The system can be considered to have a 

memory because at any particular time, the output is still responding to an 

input at a previous time. 

Graphical view of 
the convolution 
operation in 
discrete-time 
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Discrete-time convolution can be implemented by a transversal digital filter: 

 

h [0] h [1] h [2] h  k[  ]

x  n[  ]
D D D

x  n[  -1] x  n[  -2] x  n  k[  -  ]

y  n[  ]

Σ

 

 

Figure 1B.5 

MATLAB® can do convolution for us. Use the conv function. 

Transversal digital 
filter performs 
discrete-time 
convolution 
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System Memory 

A system’s memory can be roughly interpreted as a measure of how significant 

past inputs are on the current output. Consider the two unit-pulse responses 

below: 

 

0 1 2 3 4 5 6 18 19 20

h   n[  ]1

n

0 1 2 3 4 5 6 18 19 20 n

h   n[  ]2

 

 

Figure 1B.6 

System 1 depends strongly on inputs applied five or six iterations ago and less 

so on inputs applied more than six iterations ago. The output of system 2  

depends strongly on inputs 20 or more iterations ago. System 1 is said to have 

a shorter memory than system 2. 

It is apparent that a measure of system memory is obtained by noting how 

quickly the system unit-pulse response decays to zero: the more quickly a 

system’s weighting sequence goes to zero, the shorter the memory. Some 

applications require a short memory, where the output is more readily 

influenced by the most recent behaviour of the input signal. Such systems are 

fast responding. A system with long memory does not respond as readily to 

changes in the recent behaviour of the input signal and is said to be sluggish. 

System memory 
depends on the unit-
pulse response… 

…specifically - on 
how long it takes to 
decay to zero. 
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System Stability 

A system is stable if its output signal remains bounded in 

response to any bounded signal. 

(1B.33) 

If a bounded input (BI) produces a bounded output (BO), then the system is 

termed BIBO stable. This implies that: 

[ ] 0lim =
∞→

ih
i  

(1B.34) 

This is something not readily apparent from the difference equation. A more 

thorough treatment of system stability will be given later. 

What can you say about the stability of the system described by Eq. (1B.21)? 

Convolution in Linear Time-invariant Continuous-time Systems 

The input / output relationship of a continuous time system can be specified in 

terms of a convolution operation between the input and the impulse response of 

the system. 

Recall that we can consider the impulse as the limit of a rectangle function: 
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(1B.35) 

as 0→T . The system response to this input is: 

( ) ( )tyty r=  
(1B.36) 

and since: 

( ) ( )ttxr
T

δ=
→0

lim  
(1B.37) 

 

BIBO stability 
defined 

Deriving convolution 
for the continuous-
time case 

Start with a 
rectangle input 

and the output 
response. 

As the input 
approaches an 
impulse function 
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then: 

( ) ( )thtyr
T

=
→0

lim  
(1B.38) 

Now expressing the general input signal as the limit of a staircase 

approximation as shown in Figure 1B.7: 

 

0

x  t,T(    )~

t2T 4T 6T2T-4T-

x  t(  )

 

 

Figure 1B.7 

we have: 

( ) ( )Ttxtx
T

,~lim
0→
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(1B.39) 

where: 
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(1B.40) 

We can rewrite Eq. (1B.40) using Eq. (1B.35) as: 

( ) ( ) ( )∑
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−∞=

−=
i

r iTtTxiTxTtx ,~
 

 

(1B.41) 

then the output 
approaches the 
impulse response 

Treat an arbitrary 
input waveform as a 
sum of rectangles 

which get smaller 
and smaller and 
eventually approach 
the original 
waveform 

The staircase is just 
a sum of weighted 
rectangle inputs… 
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Since the system is time-invariant, the response to ( )iTtxr −  is ( )iTtyr − . 

Therefore the system response to ( )Ttx ,~  is: 

( ) ( ) ( )∑
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r iTtTyiTxTty ,~
 

 

(1B.42) 

because superposition holds for linear systems. The system response to ( )tx  is 

just the response: 

( ) ( ) ( ) ( )∑
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00
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(1B.43) 

When we perform the limit, ( ) ( )τxiTx → , ( ) ( )τ−→− thiTtyr  and τdT → . 

Hence the output response can be expressed in the form: 

( ) ( ) ( )∫
∞

∞−
−= τττ dthxty  

(1B.44) 

If the input ( ) 0=tx  for all 0<t  then: 

( ) ( ) ( )∫
∞

−=
0

τττ dthxty  

(1B.45) 

If the input is causal, then ( ) 0=−τth  for negative arguments, i.e. when t>τ . 

The upper limit in the integration can then be changed so that: 

( ) ( ) ( )∫ −=
t

dthxty
0

τττ  

(1B.46) 

Once again, it can be shown that convolution is commutative which means that 

it is also true to write (compare with Eq. (1B.31) ): 

( ) ( ) ( )∫ −=
t

dtxhty
0

τττ  

(1B.47) 

…and we already 
know the output… 

…even in the limit  
as the staircase 
approximation 
approaches the 
original input 

Convolution integral 
for continuous-time 
systems defined 

Convolution integral 
if the input starts at 
time t=0 

Convolution integral 
if the input starts at 
time t=0, and the 
system is causal 

Alternative way of 
writing the 
convolution integral 
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With the convolution operation denoted by an asterisk, “*”, the input / output 

relationship becomes: 

( ) ( ) ( )txthty *=  
(1B.48) 

Graphically, we can represent the system as: 

 

(  )h  t
(  )x  t (  )y  t (  )x  t(  )h  t *=

 

 

Figure 1B.8 

It should be pointed out, once again, that the convolution relationship is only 

valid when there is no initial energy stored in the system. ie. initial conditions 

are zero. The output response using convolution is just the ZSR. 

Graphical Description of Convolution 

Consider the following continuous-time example which has a causal impulse 

response function. A causal impulse response implies that there is no response 

from the system until an impulse is applied at 0=t . In other words, ( ) 0=th  

for 0<t . Let the impulse response of the system be a decaying exponential, 

and let the input signal be the unit-step: 

 

t

1

t

1

(  )h  t (  )x  t

e-t

 

 

Figure 1B.9 

Convolution notation 
for a continuous-
time system 

Graphical notation 
for a continuous-
time system using 
the impulse 
response 
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Using graphical convolution, the output ( )ty  can be obtained. First, the input 

signal is flipped in time about the origin. Then, as the time “parameter” t 

advances, the input signal “slides” past the impulse response – in much the 

same way as the input values slide past the unit-pulse values for discrete-time 

convolution. You can think of this graphical technique as the continuous-time 

version of a digital transversal filter (you might like to think of it as a discrete-

time system and input signal, with the time delay between successive values so 

tiny that the finite summation of Eq. (1B.30) turns into a continuous-time 

integration). 

When 0=t , there is obviously no overlap between the impulse response and 

input signal. The output must be zero since we have assumed the system to be 

in the zero-state (all initial conditions zero). Therefore ( ) 00 =y . This is 

illustrated below: 

 

τ

1 e−τ

(  )h τ

τ

1

(      )x 0-τ

τ

1
(      )x 0-τ(  )h τ

Area under the curve y(0)=  

 

Figure 1B.10 

Graphical illustration 
of continuous-time  - 
“snapshot” at t=0 
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Letting time “roll-on” a bit further, we take a snapshot of the situation when 

1=t . This is shown below: 

 

τ

1 e−τ

(  )h τ

τ

1
(      )x 1-τ

τ

1
(      )x 1-τ(  )h τ

Area under the curve y(1)=

1

1

1

e−τ

 

 

Figure 1B.11 

The output value at 1=t  is now given by: 

( ) ( ) ( )

[ ] 63.01

11

11 
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1

0

1

0

≈−===
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eede

dxhy

ττ τ

τττ

 

 

(1B.49) 

 

Graphical illustration 
of continuous-time  - 
“snapshot” at t=1 
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Taking a snapshot at 2=t  gives: 

 

τ

1 e−τ

(  )h τ

τ

1
(      )x 2-τ

τ

1
(      )x 2-τ(  )h τ

Area under the curve y(2)=

1

1

e−τ

2

2

2

1

 

 

Figure 1B.12 

The output value at 2=t  is now given by: 

( ) ( ) ( )

[ ] 86.01
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(1B.50) 

 

Graphical illustration 
of continuous-time  - 
“snapshot” at t=2 
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If we keep evaluating the output for various values of t, we can build up a 

graphical picture of the output for all time: 

 

t

(  )y  t

y(2) =

1 2

e-t1-

0.63
0.86

1

y(1) =
y(0) = 0

 

 

Figure 1B.13 

In this simple case, it is easy to verify the graphical solution using Eq. (1B.47). 

The output value at any time t  is given by: 

( ) ( ) ( )

[ ] tt

t

eede

dtxhty

−−− −===

−=

∫
∫

1
 t

0 0

0

ττ τ

τττ

 

 

(1B.51) 

In more complicated situations, it is often the graphical approach that provides 

a quick insight into the form of the output signal, and it can be used to give a 

rough sketch of the output without too much work. 
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Properties of Convolution 

In the following list of continuous-time properties, the notation ( ) ( )tytx →  

should be read as “the input ( )tx  produces the output ( )ty ”. Similar properties 

also hold for discrete-time convolution. 

( ) ( )taytax →  

( ) ( ) ( ) ( )tytytxtx 2121 +→+  

( ) ( ) ( ) ( )tyatyatxatxa 22112211 +→+  

( ) ( )00 ttyttx −→−  

(1B.52a) 

 
(1B.52b) 

(1B.52c) 

(1B.52d) 

Convolution is also associative, commutative and distributive with addition, all 

due to the linearity property. 

Numerical Convolution 

We have already looked at how to discretize a continuous-time system by 

discretizing a system’s input / output differential equation. The following 

procedure provides another method for discretizing a continuous-time system. 

It should be noted that the two different methods produce two different 

discrete-time representations. 

We start by thinking about how to simulate a continuous-time convolution with 

a computer, which operates on discrete-time data. The integral in Eq. (1B.47) 

can be discretized by setting nTt = : 

( ) ( ) ( )∫ −=
nT

dnTxhnTy
0

τττ  

(1B.53) 

 

Linearity 

Time-invariance 

Convolution 
properties 

Computers work 
with discrete data 
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By effectively reversing the procedure in arriving at Eq. (1B.47), we can break 

this integral into regions of width T: 

( ) ( ) ( )

( ) ( )

( ) ( )( )( )
K

K

+−++

+−+

−=

∫
∫
∫

+ Ti

iT

T

T

T

dTixh

dTxh

dTxhnTy

1

2

0

1

2

τττ

τττ

τττ

 

(1B.54) 

which can be rewritten using the summation symbol: 

( ) ( ) ( )∑∫
=

+
−≈

n

i

TiT

iT
dnTxhnTy

0

τττ
 

 

(1B.55) 

If T is small enough, ( )τh  and ( )τ−nTx  can be taken to be constant over each 

interval: 

 

0

h (   )iT

τ

h (  )τ

iT iT +T  

 

Figure 1B.14 

That is, apply Euler’s approximation: 

( ) ( )
( ) ( )iTnTxnTx

iThh

−≈−
≈

τ
τ

 

(1B.56) 
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so that Eq. (1B.55) becomes: 

( ) ( ) ( )∑∫
=

+
−≈

n

i

TiT

iT
diTnTxiThnTy

0

τ
 

 

(1B.57) 

Since the integrand is constant with respect to τ , it can be moved outside the 

integral which is easily evaluated: 

( ) ( ) ( )∑
=

−≈
n

i

TiTnTxiThnTy
0

 

 

(1B.58) 

Writing in the notation for discrete-time signals, we have the following input / 

output relationship: 

[ ] [ ] [ ] K,2 ,1 ,0,
0

=−≈∑
=

nTinxihny
n

i
 

 

(1B.59) 

This equation can be viewed as the convolution-summation representation of a 

linear time-invariant system with unit-pulse response [ ]nTh , where [ ]nh  is the 

sampled version of the impulse response ( )th  of the original continuous-time 

system. 

We approximate the 
integral with a 
summation 

Convolution 
approximation for 
causal systems with 
inputs applied at t=0 
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Convolution with an Impulse 

One very important particular case of convolution that we will use all the time 

is that of convolving a function with a delayed impulse. We can tackle the 

problem three ways: graphically, algebraically, or by using the concept that a 

system performs convolution. Using this last approach, we can surmise what 

the solution is by recognising that the convolution of a function ( )th  with an 

impulse is equivalent to applying an impulse to a system that has an impulse 

response given by ( )th : 

 

(  )h  t
(  )y  t (  )h  t *=(  )tδ (  )tδ = (  )h  t

t

1

(  )h  t

t

(  )tδ

t

1

(  )h  t

 

 

Figure 1B.15 

The output, by definition, is the impulse response, ( )th . We can also arrive at 

this result algebraically by performing the convolution integral, and noting that 

it is really a sifting integral: 

( ) ( ) ( ) ( ) ( )thdththt =−=∗ ∫
∞

∞−
τττδδ  

 

(1B.60) 

 

Applying an impulse 
to a system creates 
the impulse 
response 
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If we now apply a delayed impulse to the system, and since the system is time-

invariant, we should get out a delayed impulse response: 

 

(  )h  t
(  )y  t (  )h  t *= =

t

1

t t

1

(  )h  t

t0t0

(      )t-δ t0

(      )t-δ t0 (      )t-δ t0 h (      )t- t0

h (      )t- t0

 

 

Figure 1B.16 

Again, using the definition of the convolution integral and the sifting property 

of the impulse, we can arrive at the result algebraically: 

( ) ( ) ( ) ( )
( )0

00

tth

dthtthtt

−=

−−=∗− ∫
∞

∞−
τττδδ

 

 

 

(1B.61) 

Therefore, in general, we have: 

( ) ( ) ( )00 xxfxxxf −=−∗δ  
(1B.62) 

This can be represented graphically as: 

 

x

(  )f  x

xx0

(       )x-δ x0

x

(        )f  x-

x0

x0

 

 

Figure 1B.17 

Applying a delayed 
impulse to a system 
creates a delayed 
impulse response 

Convolving a 
function with an 
impulse shifts the 
original function to 
the impulse’s 
location 
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Summary 

• Systems are predominantly described by differential or difference 

equations – they are the equations of dynamics, and tell us how outputs and 

various states of the system change with time for a given input. 

• Most systems can be derived from simple cause / effect relationships, 

together with a few conservation laws. 

• Discrete-time signals occur naturally and frequently – they are signals that 

exist only at discrete points in time. Discrete-time systems are commonly 

implemented using microprocessors. 

• We can approximate continuous-time systems with discrete-time systems 

by a process known as discretization – we replace differentials with 

differences. 

• Convolution is another (equivalent) way of representing an input / output 

relationship of a system. It shows us features of the system that were 

otherwise “hidden” when written in terms of a differential or difference 

equation. 

• Convolution introduces us to the concept of an impulse response for a 

continuous-time system, and a unit-pulse response for a discrete-time 

system. Knowing this response, we can determine the output for any input, 

if the initial conditions are zero. 

• A system is BIBO stable if its impulse response decays to zero in the 

continuous-time case, or if its unit-pulse response decays to zero in the 

discrete-time case. 

• Convolving a function with an impulse shifts the original function to the 

impulse’s location. 
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Exercises 

1. 

The following continuous-time functions are to be uniformly sampled. Plot the 

discrete signals which result if the sampling period T is (i) s 1.0=T , 

(ii) s 3.0=T , (iii) s 5.0=T , (iv) s 1=T . How does the sampling time affect 

the accuracy of the resulting signal? 

(a) ( ) 1=tx  (b) ( ) ttx π4cos=  (c) ( ) ttx π10cos=  

2. 

Plot the sequences given by: 

(a) [ ] [ ] [ ] [ ] [ ]22112131 −+−+−+= nnnnny δδδδ  

(b) [ ] [ ] [ ] [ ]33242 −+−−−= nnnny δδδ  

3. 

From your solution in Question 2, find [ ] [ ] [ ]nynyna 21 −= . Show graphically 

that the resulting sequence is equivalent to the sum of the following delayed 

unit-step sequences: 

[ ] [ ] [ ] [ ] [ ] [ ]43329221113 −+−−−−−−+= nunununununa  

4. 

Find [ ] [ ] [ ]nynyny 21 +=  when: 

[ ] ( )



=−
−=

= −
K

K

,2 ,1 ,0,1

,3 ,2 ,1,0
11 2

n

--n
ny n  

[ ] ( )( )



=−+
−=

=
K

K

,2 ,1 ,0,1121

,3 ,2 ,1,0
2 n

--n
ny n  
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5. 

The following series of numbers is known as the Fibonacci sequence: 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34… 

(a) Find a difference equation which describes this number sequence [ ]ny , 

when [ ] 00 =y . 

(b) By evaluating the first few terms show that the following formula also 

describes the numbers in the Fibonacci sequence: 

[ ] ( ) ( ) 
 −−+=

nn
ny 25.15.025.15.0

5

1
 

(c) Using your answer in (a) find [ ]20y  and [ ]25y . Check your results using 

the equation in (b). Which approach is easier? 

6. 

Construct block diagrams for the following difference equations: 

(i) [ ] [ ] [ ] [ ]12 −++−= nxnxnyny  

(ii) [ ] [ ] [ ] [ ]43212 −+−−−= nxnynyny  

7. 

(i) Construct a difference equation from the following block diagram: 

D3

-2

y  n[  ]x  n[  ]

D

D D
 

(ii) From your solution calculate [ ]ny  for n = 0, 1, 2 and 3 given [ ] 22 −=−y , 

[ ] 11 −=−y , [ ] 0=nx  for 0<n  and [ ] ( )nnx 1−=  for n = 0, 1, 2 … 
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8. 

(a) Find the unit-pulse response of the linear systems given by the following 

equations: 

(i) [ ] [ ] [ ]( ) [ ]11
2

−+−+= nynxnx
T

ny  

(ii) [ ] [ ] [ ] [ ]15.0175.0 −+−−= nynxnxny  

(b) Determine the first five terms of the response of the equation in (ii) to the 

input: 

[ ]
( )







=−
−=
−−−=

=
K

K

,2 ,1 ,0,1

1,1

 ,4 ,3 ,2,0

n

n

n

nx
n

 

using (i) the basic difference equation, (ii) graphical convolution and 

(iii) the convolution summation. (Note [ ] 0=ny  for 2−≤n ). 

9. 

For the single input-single output continuous- and discrete-time systems 

characterized by the following equations, determine which coefficients must be 

zero for the systems to be 

(a) linear 

(b) time invariant 

(i) ( ) xaya
dt

dy
tayaa

dt

yd
a

dt

yd
a 765432

2

2

2

3

3

1 sin =+++++







 

(ii) [ ] [ ] [ ] ( )( ) [ ] [ ] [ ]nxanyanynanyaanyanya 765432
2

1 1sin23 =++++++++  
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10. 

To demonstrate that nonlinear systems do not obey the principle of 

superposition, determine the first five terms of the response of the system: 

[ ] [ ] [ ]nxnyny 212 +−=  

to the input: 

[ ] 



=
−=

=
K

K

,2 ,1 ,0,1

,3 ,2 ,1,0
1 n

--n
nx  

If [ ]ny1  denotes this response, show that the response of the system to the input 

[ ] [ ]nxnx 12=  is not [ ]ny12 . 

Can convolution methods be applied to nonlinear systems? Why? 

11. 

A system has the unit-pulse response: 

[ ] [ ] [ ] [ ]422 −−−−= nunununh  

Find the response of this system when the input is the sequence: 

[ ] [ ] [ ] [ ]321 −−−+−− nnnn δδδδ  

using (i) graphical convolution and (ii) convolution summation. 
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12. 

For [ ]nx1  and [ ]nx2  as shown below find 

(i) [ ] [ ]nxnx 11 ∗  (ii) [ ] [ ]nxnx 21 ∗  (iii) [ ] [ ]nxnx 22 ∗  

using (a) graphical convolution and (b) convolution summation. 

0 1 2
n

0 1 2
n

3 4 5 6 7 8

2 2

3

x   n1[  ] x   n2[  ]

 

13. 

Use MATLAB® and discretization to produce approximate solutions to the 

revision problem. 

14. 

Use MATLAB® to graph the output voltage of the following RLC circuit: 

R L

Cvi t(  ) vo t(  )

 

when ( ) ( ) 10,10,1,2 −===== oo vvCLR &  and ( ) ( ) ( )tuttvi sin= . 

Compare with the exact solution: ( ) ( ) ( )[ ] 0,cos35.0 ≥−+= − ttettv t
o . How do 

you decide what value of T to use? 
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15. 

A feedback control system is used to control a room’s temperature with respect 

to a preset value. A simple model for this system is represented by the block 

diagram shown below:  

 

∫ ∞−

t
x  t(  ) K y  t(  )

 

In the model, the signal ( )tx  represents the commanded temperature change 

from the preset value, ( )ty  represents the produced temperature change, and t  

is measured in minutes. Find:  

a) the differential equation relating ( )tx  and ( )ty , 

b) the impulse response of the system, and 

c) the temperature change produced by the system when the gain K  is 0.5 and 

a step change of °75.0  is commanded at min 4=t . 

d) Plot the temperature change produced. 

e) Use MATLAB® and numerical convolution to produce approximate 

solutions to this problem and compare with the theoretical answer. 

16. 

Use MATLAB® and the numerical convolution method to solve Q14. 
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17. 

Quickly changing inputs to an aircraft rudder control are smoothed using a 

digital processor. That is, the control signal is converted to a discrete-time 

signal by an A/D converter, the discrete-time signal is smoothed with a 

discrete-time filter, and the smoothed discrete-time signal is converted to a 

continuous-time, smoothed, control signal by a D/A converter. The smoothing 

filter has the unit-pulse response: 

[ ] ( ) [ ] s 25.0,25.05.0 =−= TnTunTh nn  

Find the zero-state response of the discrete-time filter when the input signal 

samples are: 

[ ] { } s 25.0,1 ,1 ,1 == TnTx  

Plot the input, unit-pulse response, and output for s 5.175.0 ≤≤− t . 
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18. 

A wave staff measures ocean wave height in meters as a function of time. The 

height signal is sampled at a rate of 5 samples per second. These samples form 

the discrete-time signal: 

[ ] ( )( ) ( )( )5.13.02cos5.01.12.02cos +++= nTnTnTs ππ  

The signal is transmitted to a central wave-monitoring station. The 

transmission system corrupts the signal with additive noise given by the 

MATLAB® function: 

function n0=drn(n) 
  N=size(n,2); 
  rand(‘seed’, 0); 
  no(1)=rand-0.5; 
  for I=2:N; 
    no(i)=0.2*no(i-1)+(rand-0.5); 
end 

The received signal plus noise, [ ]nTx , is processed with a low-pass filter to 

reduce the noise. 

The filter unit-pulse response is: 

[ ] ( ) ( ) ( ) ( ) ( ){ } [ ]nTunnnTh nnn 41.0sin87.0194.041.0cos87.0144.076.0182.0 +−=  

Plot the sampled height signal, [ ]nTs , the filter input signal, [ ]nTx , the unit-

pulse response of the filter, [ ]nTh , and the filter output signal [ ]nTy , for 

s 60 ≤≤ t .
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Gustav Robert Kirchhoff (1824-1887) 

Kirchhoff was born in Russia, and showed an early interest in mathematics. He 

studied at the University of Königsberg, and in 1845, while still a student, he 

pronounced Kirchhoff’s Laws, which allow the calculation of current and 

voltage for any circuit. They are the Laws electrical engineers apply on a 

routine basis – they even apply to non-linear circuits such as those containing 

semiconductors, or distributed parameter circuits such as microwave striplines. 

He graduated from university in 1847 and received a scholarship to study in 

Paris, but the revolutions of 1848 intervened. Instead, he moved to Berlin 

where he met and formed a close friendship with Robert Bunsen, the inorganic 

chemist and physicist who popularized use of the “Bunsen burner”. 

In 1857 Kirchhoff extended the work done by the German physicist Georg 

Simon Ohm, by describing charge flow in three dimensions. He also analysed 

circuits using topology. In further studies, he offered a general theory of how 

electricity is conducted. He based his calculations on experimental results 

which determine a constant for the speed of the propagation of electric charge. 

Kirchhoff noted that this constant is approximately the speed of light – but the 

greater implications of this fact escaped him. It remained for James Clerk 

Maxwell to propose that light belongs to the electromagnetic spectrum. 

Kirchhoff’s most significant work, from 1859 to 1862, involved his close 

collaboration with Bunsen. Bunsen was in his laboratory, analysing various 

salts that impart specific colours to a flame when burned. Bunsen was using 

coloured glasses to view the flame. When Kirchhoff visited the laboratory, he 

suggested that a better analysis might be achieved by passing the light from the 

flame through a prism. The value of spectroscopy became immediately clear. 

Each element and compound showed a spectrum as unique as any fingerprint, 

which could be viewed, measured, recorded and compared. 

Spectral analysis, Kirchhoff and Bunsen wrote not long afterward, promises 

“the chemical exploration of a domain which up till now has been completely 
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closed.” They not only analysed the known elements, they discovered new 

ones. Analyzing salts from evaporated mineral water, Kirchhoff and Bunsen 

detected a blue spectral line – it belonged to an element they christened 

caesium (from the Latin caesius, sky blue). Studying lepidolite (a lithium-

based mica) in 1861, Bunsen found an alkali metal he called rubidium (from 

the Latin rubidius, deepest red). Both of these elements are used today in 

atomic clocks. Using spectroscopy, ten more new elements were discovered 

before the end of the century, and the field had expanded enormously – 

between 1900 and 1912 a “handbook” of spectroscopy was published by 

Kayser in six volumes comprising five thousand pages! 

Kirchhoff’s work on spectrum analysis led on to a study of the composition of 

light from the Sun. He was the first to explain the dark lines (Fraunhofer lines) 

in the Sun's spectrum as caused by absorption of particular wavelengths as the 

light passes through a gas. Kirchhoff wrote “It is plausible that spectroscopy is 

also applicable to the solar atmosphere and the brighter fixed stars.” We can 

now analyse the collective light of a hundred billion stars in a remote galaxy 

billions of light-years away – we can tell its composition, its age, and even how 

fast the galaxy is receding from us – simply by looking at its spectrum! 

As a consequence of his work with Fraunhofer’s lines, Kirchhoff developed a 

general theory of emission and radiation in terms of thermodynamics. It stated 

that a substances capacity to emit light is equivalent to its ability to absorb it at 

the same temperature. One of the problems that this new theory created was the 

“blackbody” problem, which was to plague physics for forty years. This 

fundamental quandary arose because heating a black body – such as a metal 

bar – causes it to give off heat and light. The spectral radiation, which depends 

only on the temperature and not on the material, could not be predicted by 

classical physics. In 1900 Max Planck solved the problem by discovering 

quanta, which had enormous implications for twentieth-century science. 

In 1875 he was appointed to the chair of mathematical physics at Berlin and he 

ceased his experimental work. An accident-related disability meant he had to 

spend much of his life on crutches or in a wheelchair. 

“[Kirchhoff is] a 
perfect example of 
the true German 
investigator. To 
search after truth in 
its purest shape and 
to give utterance 
with almost an 
abstract self-
forgetfulness, was 
the religion and 
purpose of his life.” 
– Robert von 
Helmholtz, 1890. 


