1 Lognormal stock process with normal volatility process

The next model we consider is a lognormal stock process with a normal volatility process, given
by
{dS = uS dt + oS dW, dW ~ N(0,dt), (1.1)

do=adt+bdW, AW ~ N(0, dt). (1.2)

Here a and b are constants. The stochastic parts dW and dW have correlation p, such that
E [deW} = p dt.

Applying It6’s formula (?7?) again, we get
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The next step is to construct a portfolio
M=V -AS—-AW, (1.4)

which contains the option V(S,0,t), a quantity —A of the stock S, and a quantity —A; of
another asset whose value Vi depends on the volatility o.

The change dII in this portfolio in a time dt is given by
dIl = dV — AdS — A;d V1.
Also we know that dIT = rIIdt = r (V — AS — A;1V;) dt, such that we have
r(V —AS — AVi)dt = dV — AdS — AydV;.

To make the portfolio instantaneously risk-free, we must eliminate all terms with dW; and th.
So we choose
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A = % — A ﬁ and
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Collecting all V-terms on the left-hand side and all V;-terms on the right-hand side, we get
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The left-hand side of equation (1.5) is a function of V only and the right-hand side is a function
of V1 only. The only way that this can be is for both sides to be equal to some function f of the
independent variables S, o and t. We deduce that
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where, without loss of generality, we have written the arbitrary function f of S, o and t as
(a - )\ba), where a and b are the constant drift and volatility from the SDE (1.2) for instanta-

neous variance.

So the price V (S, 0,t) satisfies the following differential equation:
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1.1 Scalings
Suppose that ¢ and b are small volatilities, and write
g b v
Y=—&o0o=¢"Y and B=— <b=¢"B. (1.8)
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Then the partial differential equation (1.7) becomes
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Maximum balance gives
0=2v—n & 2w=n < v=1,n=2, (1.10)
such that equation (1.9) becomes
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1.2 Outer expansion
Expand V; = Vi +eVi + ..., such that the O(1) equation becomes
1,0V, oW
-B? —— =0, 1.12
27 oz Tox =0 (1.12)
After integrating twice, we have
B2 _2awn
Vo(S,%,t) = —c1(S, t)%e BZ™ 4+ c9(S, 1), (1.13)

with terminal condition V5(S,%,T) = P(S) = max(S — K, 0).



This solution should also satisfy the following limits:!

Jim Vo (8,3, 1) = max(8 — K, 0) - e (=1, (1.14)
and
Jim Vo(5,%,1) = 8, (1.15)

which gives ¢3(S,t) and
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a(s,1) = =
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(02(5 t) — max(S — K,0) - e*T(T*t)> = B—C; <S —max(S — K,0) - e*T(T*t)) .
The solution of the O(1) equation (1.12) thus becomes
Vo(S,2,t) = (maX(S —K,0)-e 7T S) ) (1.16)

The O(e) equation is given by
Lo o*Vy 0w
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After integrating twice, again we have
B2 _2a %
Vi(S,3,t) = —03(S,t)2—e B2™ + ¢y4(S,1). (1.18)
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Now the terminal condition is given by Vi(S,%,T) = 0.
Also we know that
lim Vi = 0, (1.19)
¥—0
and
lim V; =0, (1.20)
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such that c4(S,t) = 0 and ¢3(S,t) = 0, and thus the solution of the O(g) equation (1.17) is given
by
Vi(S,%,t) = 0. (1.21)

The O(£?) equation is given by

My 1p0Vs Vo OVe

Now that we know the O(1) solution Vj, we can substitute it, such that the O(e?) equation
becomes?
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*ISOLUTION: MAYBE NOT NECESSARY FOR OUTER EXPANSION?!*

= (—2 max(S — K,0) e "7 + § H(S — K) e (T — S) re B Y 41,

'This can be explained by considering te case ¥ = 0, which also causes d¥ = 0. The SDE now becomes
dS = pSdt, which is deterministic, with terminal condition V(S,7T") = max(S — K,0). And when we take a look
at the case ¥ — oo in the exact Black-Scholes solution, we get V' — S.

2Here H(-) is the Heaviside function.



O(epsilon) approximation with lognormal-normal model
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Figure 1: The O(e) approximation Vj + £V;.

1.3 Inner expansion
In order to create an interior boundary layer near S = K, we introduce a local variable

S—-K

= — 1.2
oK (1.23)
such that we can replace S by K (1 + &%x).
The partial differential equation (1.11) now becomes
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Maximum balance gives o = %, such that we have
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If we expand V. =V + v/eVi +eVa + ..., the O(1) equation becomes
2
7226 Yo 7328 Vo +a Vo =0, (1.24)
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subject to the boundary conditions

L%in% Vo(z,3,t) = e max(z,0)e "7, (1.25)
Jim Vo, B,) = K(1+ et z), (1.26)

and terminal condition ,
Vo(z,3,T) = e2 K max(z, 0). (1.27)

For notational reasons, we rewrite equation (1.24)
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To solve this, we use separation of variables, writing
Vo = X (2)Y (o). (1.29)
After substitution into equation (1.28), we obtain
1 1
5aQX”(ac)Y(U) + 5B2X(gc)Y”(a) +aX(2)Y'(0) = 0, (1.30)
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X(x) c? Y(e) o02Y(o)
So we have to solve the following two ODEs:
X”(CE)
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The solution of the first ODE (1.32) for X (x) is given by
X(x) = 2z sinh(Vkx) + 20 cosh(VEz), with 21,2 € R. (1.34)

The solution of the ODE for Y (o) can be found by constructing a power series in o

Y(o) =) cno", (1.35)
n=0
First we rewrite the ODE (1.33) as
B2%Y"(0) + 2aY'(0) + koY (o) = 0, (1.36)

which after substitution of the series (1.35) becomes
oo oo o0
B? Z n(n —1)c,0" 2 + 2a Z nepo™ 4 ko Z cno” = 0. (1.37)
n=2 n=0 n=0

Now, changing coefficients so all powers are the same, we have
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Z ((n+2)B%cpi0 + 2ac,) (n+ 1)o" + Z kcp_o0™ = 0. (1.38)
n=0 n=2



For n = 0 and n = 1 we obtain

n=0: 23202—1—2&00 = 0 =c=—%0c,
n=1: (6B%cz+4aci)o = 0 =c3=—5%c,

and for n > 1 we have the following recurrency relation:

2
(n+1)(n+2)B%cpia +2acy(n+1) + kepa =0 = cpyo = — a
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*IBCs? GENERAL SOLUTION?!*
The O(1/¢) equation is given by
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*ISOLUTION?!*

1.4 Matching

(n+2)B2

(n+1)(n+2)B2

(1.39)
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A List

of symbols

Greek symbols
Second order derivative of the option price, one of the Greeks.
Parameter in the CEV model.

order derivative of the option price, one of the Greeks.

Dividend.
Stretching parameter.

I
~:
A:  First
0:
e:

e Drift.

o Volatility.

Latin symbols

Bti

Bond price.

Strike price.

Standard normal cumulative distribution function, N(z) = i I e‘édz.
Normal distribution with mean p and variance o2.

Standard normal probability density function, n(z) = Lefé.

Payoft.

Risk-free interest rate.
Stock price.

Expiry time.

Time.

General option price.

Price of a call option.
Price of a put option.
Wiener Process.



