
1 Lognormal stock process with normal volatility process

The next model we consider is a lognormal stock process with a normal volatility process, given
by {

dS = µS dt+ σS dW, dW ∼ N(0,dt),

dσ = a dt+ b dW̃ , dW̃ ∼ N(0,dt).

(1.1)

(1.2)

Here a and b are constants. The stochastic parts dW and dW̃ have correlation ρ, such that

E
[
dWdW̃

]
= ρ dt.

Applying Itô’s formula (??) again, we get

dV =
∂V

∂t
dt+

1
2
∂2V

∂S2
dS2 +

1
2
∂2V

∂σ2
dσ2 +

∂2V

∂S∂σ
dSdσ +

∂V

∂S
dS +

∂V

∂σ
dσ.

=
(
∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+

1
2
b2
∂2V

∂σ2
+ bσSρ

∂2V

∂S∂σ
+ µS

∂V

∂S
+ a

∂V

∂σ

)
dt

+ σS
∂V

∂S
dW + b

∂V

∂σ
dW̃ . (1.3)

The next step is to construct a portfolio

Π = V −∆S −∆1V1, (1.4)

which contains the option V (S, σ, t), a quantity −∆ of the stock S, and a quantity −∆1 of
another asset whose value V1 depends on the volatility σ.

The change dΠ in this portfolio in a time dt is given by

dΠ = dV −∆dS −∆1dV1.

Also we know that dΠ = rΠdt = r (V −∆S −∆1V1) dt, such that we have

r (V −∆S −∆1V1) dt = dV −∆dS −∆1dV1.

To make the portfolio instantaneously risk-free, we must eliminate all terms with dWt and dW̃t.
So we choose

∆ =
∂V

∂S
−∆1

∂V1

∂S
, and

∆1 =
∂V

∂σ

/∂V1

∂σ
= 0.

Collecting all V -terms on the left-hand side and all V1-terms on the right-hand side, we get

∂V
∂t + 1

2σ
2S2 ∂2V

∂S2 + 1
2b

2 ∂2V
∂σ2 + bσSρ ∂2V

∂S∂σt
+ rS ∂V∂S − rV

∂V
∂σ

=
∂V1
∂t + 1

2σ
2S2 ∂2V1

∂S2 + 1
2b

2 ∂2V1
∂σ2 + bσSρ ∂

2V1
∂S∂σ + rS ∂V1

∂S − rV1

∂V1
∂σ

. (1.5)
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The left-hand side of equation (1.5) is a function of V only and the right-hand side is a function
of V1 only. The only way that this can be is for both sides to be equal to some function f of the
independent variables S, σ and t. We deduce that

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+

1
2
b2
∂2V

∂σ2
+ bσSρ

∂2V

∂S∂σ
+ rS

∂V

∂S
− rV = −

(
a− λbσ

)∂V
∂σ

, (1.6)

where, without loss of generality, we have written the arbitrary function f of S, σ and t as(
a− λbσ

)
, where a and b are the constant drift and volatility from the sde (1.2) for instanta-

neous variance.

So the price V (S, σ, t) satisfies the following differential equation:

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+

1
2
b2
∂2V

∂σ2
+ bσSρ

∂2V

∂S∂σ
+ rS

∂V

∂S
+
(
a− λbσ

)∂V
∂σ
− rV = 0. (1.7)

1.1 Scalings

Suppose that σ and b are small volatilities, and write

Σ =
σ

εη
⇔ σ = εηΣ and B =

b

εν
⇔ b = ενB. (1.8)

Then the partial differential equation (1.7) becomes

εη
∂V

∂t
+

1
2
ε3ηΣ2S2∂

2V

∂S2
+

1
2
ε2ν−ηB2∂

2V

∂Σ2
+ εη+νΣBSρ

∂2V

∂S∂Σ
+ εηrS

∂V

∂S

+
(
a− εη+νλBΣ

)∂V
∂Σ
− εηrV = 0. (1.9)

Maximum balance gives

0 = 2ν − η ⇔ 2ν = η ⇔ ν = 1, η = 2, (1.10)

such that equation (1.9) becomes

ε2∂V

∂t
+

1
2
ε3Σ2S2∂

2V

∂S2
+

1
2
B2∂

2V

∂Σ2
+ ε3ΣBSρ

∂2V

∂S∂Σ
+ ε2rS

∂V

∂S

+
(
a− ε3λBΣ

)∂V
∂Σ
− ε2rV = 0. (1.11)

1.2 Outer expansion

Expand Vε = V0 + εV1 + . . ., such that the O(1) equation becomes

1
2
B2∂

2V0

∂Σ2
+ a

∂V0

∂Σ
= 0. (1.12)

After integrating twice, we have

V0(S,Σ, t) = −c1(S, t)
B2

2a
e−

2a
B2 Σ + c2(S, t), (1.13)

with terminal condition V0(S,Σ, T ) = P (S) = max(S −K, 0).
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This solution should also satisfy the following limits:1

lim
Σ→0

V0(S,Σ, t) = max(S −K, 0) · e−r(T−t), (1.14)

and
lim

Σ→∞
V0(S,Σ, t) = S, (1.15)

which gives c2(S, t) and

c1(S, t) =
2a
B2

(
c2(S, t)−max(S −K, 0) · e−r(T−t)

)
=

2a
B2

(
S −max(S −K, 0) · e−r(T−t)

)
.

The solution of the O(1) equation (1.12) thus becomes

V0(S,Σ, t) =
(

max(S −K, 0) · e−r(T−t) − S
)
e−

2a
B2 Σ + S. (1.16)

The O(ε) equation is given by
1
2
B2∂

2V1

∂Σ2
+ a

∂V1

∂Σ
= 0. (1.17)

After integrating twice, again we have

V1(S,Σ, t) = −c3(S, t)
B2

2a
e−

2a
B2 Σ + c4(S, t). (1.18)

Now the terminal condition is given by V1(S,Σ, T ) = 0.

Also we know that
lim
Σ→0

V1 = 0, (1.19)

and
lim

Σ→∞
V1 = 0, (1.20)

such that c4(S, t) = 0 and c3(S, t) = 0, and thus the solution of the O(ε) equation (1.17) is given
by

V1(S,Σ, t) = 0. (1.21)

The O(ε2) equation is given by

∂V0

∂t
+

1
2
B2∂

2V2

∂Σ2
+ rS

∂V0

∂S
+ a

∂V2

∂Σ
− rV0 = 0. (1.22)

Now that we know the O(1) solution V0, we can substitute it, such that the O(ε2) equation
becomes2

1
2
B2∂

2V2

∂Σ2
+ a

∂V2

∂Σ
=
(
−2 max(S −K, 0) e−r(T−t) + S H(S −K) e−r(T−t) − S

)
re−

2a
B2 Σ + 1.

*!SOLUTION: MAYBE NOT NECESSARY FOR OUTER EXPANSION?!*

1This can be explained by considering te case Σ = 0, which also causes dΣ = 0. The sde now becomes
dS = µSdt, which is deterministic, with terminal condition V (S, T ) = max(S −K, 0). And when we take a look
at the case Σ→∞ in the exact Black-Scholes solution, we get V → S.

2Here H(·) is the Heaviside function.
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Figure 1: The O(ε) approximation V0 + εV1.

1.3 Inner expansion

In order to create an interior boundary layer near S = K, we introduce a local variable

x =
S −K
εαK

, (1.23)

such that we can replace S by K (1 + εαx).

The partial differential equation (1.11) now becomes

ε2∂V

∂t
+

1
2
ε3−2αΣ2∂

2V

∂x2
+ ε3−αx2Σ2∂

2V

∂x2
+

1
2
ε3x2Σ2∂

2V

∂x2
+

1
2
B2∂

2V

∂Σ2
+ ε3−αΣBρ

∂2V

∂x∂Σ

+ε3ΣBρx
∂2V

∂x∂Σ
+ ε2−αr

∂V

∂x
+ ε2rx

∂V

∂x
+
(
a− ε3λBΣ

) ∂V
∂Σ
− ε2rV = 0.

Maximum balance gives α = 3
2 , such that we have

ε2∂V

∂t
+

1
2

Σ2∂
2V

∂x2
+ ε

3
2x2Σ2∂

2V

∂x2
+

1
2
ε3x2Σ2∂

2V

∂x2
+

1
2
B2∂

2V

∂Σ2
+ ε

3
2 ΣBρ

∂2V

∂x∂Σ

+ε3ΣBρx
∂2V

∂x∂Σ
+ ε

1
2 r
∂V

∂x
+ ε2rx

∂V

∂x
+
(
a− ε3λBΣ

) ∂V
∂Σ
− ε2rV = 0.

If we expand Vε = V0 +
√
εV1 + εV2 + . . ., the O(1) equation becomes

1
2

Σ2∂
2V0

∂x2
+

1
2
B2∂

2V0

∂Σ2
+ a

∂V0

∂Σ
= 0, (1.24)
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subject to the boundary conditions

lim
Σ→0

V0(x,Σ, t) = ε
3
2 max(x, 0)e−r(T−t), (1.25)

lim
Σ→∞

V0(x,Σ, t) = K(1 + ε
3
2x), (1.26)

and terminal condition
V0(x,Σ, T ) = ε

3
2K max(x, 0). (1.27)

For notational reasons, we rewrite equation (1.24)

1
2
σ2∂

2V0

∂x2
+

1
2
B2∂

2V0

∂σ2
+ a

∂V0

∂σ
= 0. (1.28)

To solve this, we use separation of variables, writing

V0 = X(x)Y (σ). (1.29)

After substitution into equation (1.28), we obtain

1
2
σ2X ′′(x)Y (σ) +

1
2
B2X(x)Y ′′(σ) + aX(x)Y ′(σ) = 0, (1.30)

⇒ X ′′(x)
X(x)

= −B
2

σ2

Y ′′(σ)
Y (σ)

− 2a
σ2

Y ′(σ)
Y (σ)

= k. (1.31)

So we have to solve the following two odes:

X ′′(x)
X(x)

= k, (1.32)

−B
2

σ2

Y ′′(σ)
Y (σ)

− 2a
σ2

Y ′(σ)
Y (σ)

= k. (1.33)

The solution of the first ode (1.32) for X(x) is given by

X(x) = z1 sinh(
√
kx) + z2 cosh(

√
kx), with z1, z2 ∈ R. (1.34)

The solution of the ode for Y (σ) can be found by constructing a power series in σ

Y (σ) =
∞∑
n=0

cnσ
n, (1.35)

First we rewrite the ode (1.33) as

B2Y ′′(σ) + 2aY ′(σ) + kσ2Y (σ) = 0, (1.36)

which after substitution of the series (1.35) becomes

B2
∞∑
n=2

n(n− 1)cnσn−2 + 2a
∞∑
n=0

ncnσ
n−1 + kσ2

∞∑
n=0

cnσ
n = 0. (1.37)

Now, changing coefficients so all powers are the same, we have

∞∑
n=0

(
(n+ 2)B2cn+2 + 2acn

)
(n+ 1)σn +

∞∑
n=2

kcn−2σ
n = 0. (1.38)

5



For n = 0 and n = 1 we obtain

n = 0 : 2B2c2 + 2ac0 = 0 ⇒ c2 = − a
B2 c0,

n = 1 : (6B2c3 + 4ac1)σ = 0 ⇒ c3 = − 2a
3B2 c1,

and for n > 1 we have the following recurrency relation:

(n+ 1)(n+ 2)B2cn+2 + 2acn(n+ 1) + kcn−2 = 0⇒ cn+2 = − 2a
(n+ 2)B2

− kcn−2

(n+ 1)(n+ 2)B2
.

*!BCs? GENERAL SOLUTION?!*

The O(
√
ε) equation is given by

1
2

Σ2∂
2V1

∂x2
+

1
2
B2∂

2V1

∂Σ2
+ r

∂V0

∂x
+ a

∂V0

∂Σ
= 0. (1.39)

*!SOLUTION?!*

1.4 Matching
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A List of symbols

Greek symbols
Γ: Second order derivative of the option price, one of the Greeks.
γ: Parameter in the CEV model.
∆: First order derivative of the option price, one of the Greeks.
δ: Dividend.
ε: Stretching parameter.
µt: Drift.
σt: Volatility.

Latin symbols
Bt: Bond price.
K: Strike price.

N(·): Standard normal cumulative distribution function, N(x) = 1√
2π

∫ x
−∞ e

− z2

2 dz.
N(µ, σ): Normal distribution with mean µ and variance σ2.

n(·): Standard normal probability density function, n(x) = 1√
2π
e−

z2

2 .
P (S): Payoff.
rt: Risk-free interest rate.
St: Stock price.
T : Expiry time.
t: Time.
V : General option price.
V call: Price of a call option.
V put: Price of a put option.
Wt: Wiener Process.
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