
The value of the first derivative (slope) of the func-
tion

E(t) =

∫ T

0

I(t)V (t)dt =∫ T

0

A sin(ωt+ Θ)(F + Vm sin(ωt))dt (1)

at a given point τ within the interval [0,T ] is

E′(τ) =
d

dτ

∫ τ

0

IinVindt = IinVin|t=τ =

A sin(ωτ + Θ)(F + Vm sin(ωτ)) (2)

where Vm is the amplitude of the applied voltage, V;
F is the offset voltage, V; ω = 2πf is the angular
velocity, rad s−1; f = 1

T is the frequency, Hz; T is
the period, s, t is the time, s, A = Vm√

R2+( 1
2πfC )

2
and

Θ = arctan
(

1
R2πfC

)
.

Therefore, the average value of the first derivative
(slope) of that function within the entire interval [0,T ]
is

P from integral
in =

1

T

∫ T

0

E′(t)dt =

1

T

∫ T

0

A sin(ωt+ Θ)(F + Vm sin(ωt))dt =

AVmcos(Θ)

2
= const (3)

On the other hand, since, as seen, A sin(ωτ+Θ)(F+
Vm sin(ωτ)) is the slope of the function E(t) at time
τ the average slope within the interval [0,T ] can be
expressed as:

P from series
in =

lim
n→∞

(
1

n

n∑
i=1

Asin (ωτ + Θ) (F + Vmsin (ωτ))

)
(4)

where τ =
(
T
n + (i−1)T

n−1

)
. As is known the value of the

integral (eq.(3)) is the limit of the corresponding Rie-
mann sum while series (eq.(4)) is not a Riemann sum
although expressing the same thing as (eq.(3)). Nev-
ertheless, it is expected that eq.(3) and eq.(4) should
produce the same result.

In this exercise we would like to check this out.
Since there is no analytical way to check what the

series (eq.(4)) converges to one way to find that out
is to use a numerical method. Numerical methods
are based inherently on partitioning the studied in-
terval [0,T ]. Too small a partition would lead to
approximation while too big a partition will lead to
greater rounding errors as well as floating point er-
rors. Therefore, for this exercise, a partition P =
1000 is chosen as a compromise.

It can be demonstrated that when numerical inte-
gration is carried out for P = 1000 both for offset
F 6= 0 and for offset F = 0 the result is practically
constant for all values of F and is practically equal to
the value AVmcos(Θ)

2 = const of the integral in eq.(3).
The numerical calculation of the series in eq.(4) for

the same P = 1000 and offset F = 0 also gives as a
result a value practically equal to AVmcos(Θ)

2 = const.
However, when the numerical calculation of the se-

ries in eq.(4) is carried out for the same P = 1000 but
the offset now is F 6= 0 then the result becomes a
function of the offset F . For values of F < 0 not
only the integral tends towards zero but after a cer-
tain F it becomes negative. The opposite is observed
when F > 0. In this case the integral becomes more
and more positive with the increase of F . Of course,
there are physical limits to the decrease (respectively
increase) of F . However, the observed dramatic ef-
fects in changing the P from series

in value compared to
the constant value of the P from integral

in is observed
even at modest physically viable values of Vm and F
on the order of volts.


