
Unique Factorization in Z[X] 

We have already used Eisenstein's criterion, without proof, to produce irreducible 
polynomials over Z.  We will fill the gap in our logic by proving that result now.  The 
essential point is Gauss' theory of the content of a polynomial, and of primitive 
polynomials.  These concepts allow us to compare factorization in Z[X] with that in 
Q[X], and to deduce that a monic polynomial which is irreducible in Z[X] remains 
irreducible in Q[X].  The contrapositive statement that an integral polynomial which is 
reducible in Q[X] is also reducible in Z[X] allows us to obtain (unique) factorization of 
polynomials in Z[X], and more generally also in k[X1,....,Xn].   

Theorem (Gauss):  If R is a ufd, then R[X] is a ufd also. 

This is the most general statement we shall prove, in the next section, but we shall 
proceed to the proof in stages, first proving that Z[X] is a ufd.  This proof contains all the 
essential ideas.  It is simple in principle, but the details are tedious to do completely.  We 
will attempt to make the main ideas clear, and we will also try to present essentially all 
the details.  First of all, think back over your own experience, factoring things like 
x2+5x+6 = (x+2)(x+3).  Notice that when the coefficients of the original polynomial are 
integers, then the coefficients of the factors are also integers.  To be sure, you can factor 
x2-2 = (x-21/2)(x+21/2) with irrational numbers.  But if an integral polynomial factors 
with rational numbers, then it already factors with integers.  This is one of the first results 
we shall prove using Gauss' idea of "content". 

Very briefly then, to factor an integral polynomial f over Z[X], for example f = 6x2-
30x+36, just remove the gcd of the coefficients (this is the "content"), here f = 
6(x2+5x+6), then factor separately the content and the remaining polynomial f = 
(2)(3)(x+2)(x+3), and these are the irreducible factors of f over Z[x].  Note there are four 
irreducible factors here since 2, 3 are not units, but primes in Z[x]. 

The most important concept is the following one: 

Definition: The "content" of a polynomial f in Z[X] is the gcd of the coefficients of f.  If 
f=0, the content is 0.  We denote content(f) = cf. 

Thus cf is a well defined non negative integer which is zero iff f =0. 

Definition: A polynomial f in Z[X] is "primitive" iff cf =1, iff the coefficients of f have 
no common prime integral factor. 

Lemma: Let f,g,h, be non zero polynomials in Z[X]. 

(i) c in Z+ is the content of f iff f = cg where g is primitive. 

(ii) If c,d are in Z+, g,h in Z[X] are primitive, and cg = dh, then c=d and g=h. 

(iii) Every non zero f in Z[X] has a unique associated primitive polynomial f0 such that f 
= cf(f0).  [Or if f=0, take f0=1.] 



(iv) If f ≠ 0 in #[X], and f = cg where c is in Z+ and g is primitive, then c = cf and g = f0.  

proof: Exercise. QED.  

 

The main property of the content is that it is multiplicative.  We prove this in the 
following steps.  

Lemma: If g,h are primitive in Z[X] and f = gh, then f is primitive. 

proof: If p is any prime integer, it suffices to prove that some coefficient of f is not 
divisible by p.  Since this is true for both g and h, among the coefficients of g which are 
not divisible by p there is a highest one say ar, and similarly a highest one among the 
coefficient of h not divisible by p, say bs.  Then the coefficient c of Xr+s in f is a sum of 
terms, of which one is arbs and the others are of form akbl where k+l = r+s.  Hence 
except when k = r, l = s, we must have k > r or l > s.   In these cases, either p divides ak 
or bl and thus their product.  Hence p divides every term but one in the coefficient c of 
Xr+s, and hence p does not divide c. QED.  

 

Lemma: If f,g,h are in #[X] and f = gh, then cf = (cg)(ch). 

proof: In the notation introduced above we have g = cg(g0), and h = ch(h0), whence f = 
gh = cgch(g0h0), where g0h0 is primitive.  Thus by the properties given above for 
content, cf = cgch. QED. 

 

Lemma: If a, b, c, d are in Z+, and g, h are primitive (in Z[X]), and if (a/b)g = (c/d)h, 
then a/b = c/d, and g = h.   

proof:  Multiplying by bd, we conclude that adg = bch, whence the properties above of 
content imply ad = bc, hence a/b = c/d.  Dividing through by a/b = c/d, then g =h. QED. 

 

Remark: If f is non zero in Q[X], there exist a,b in Z+ and a primitive g in Z[X] such 
that f = (a/b)g, since we may take b as a positive common multiple of the denominators 
of the coefficients of f, and a = content(bf), where bf is in #[X].  By the previous lemma, 
a/b and g are unique. 

 

Definition: For any non zero f in Q[X] the content is the unique positive element cf of Q 
such that f = cf(f0) where f0 is primitive in Z[X].  The unique such f0 is called the 
"primitive form" of f. 



 

Multiplicativity holds also for rational contents. 

Lemma: For any g,h in $[X], if f=gh then cf = cgch. 

proof:  The proof is the same as for integral contents. QED. 

 

It follows that the "primitive form" is also multiplicative: 

Lemma: For any g,h in Q[X], (gh)0 = (g0)(h0). 

proof: The lemmas imply that (gh)0 is the unique primitive polynomial P such that gh is 
a positive rational multiple of P.  But gh = cg(g0)ch(h0) = cgch(g0h0), where cg, ch are 
positive and rational and (g0h0) is primitive. QED. 

 

Now we can go through the proof that Z[X] is a ufd, by replacing every polynomial by its 
primitive form whenever possible.  The point is that the primitive polynomials have the 
same divisibility properties in Q[X] as in Z[X], allowing us to bring unique factorization 
down from Q[X] to Z[X].  (We emphasize that primitive polynomials are always 
elements of Z[X], and the only constant primitive polynomials are 1, -1.)  More precisely: 

 

Lemma: If f is primitive, then f is reducible in Z[X] iff f is reducible in Q[X].  In fact if f 
= gh, with g,h non units in Q[X], then also f = (g0)(h0), where g0, h0 are the primitive 
forms of g,h.  

proof: If f is reducible in Z[X], f = gh, then both g,h have degree _1 since f is primitive, 
hence g,h are non units in Q[X] and f is reducible in Q[X].  If f = gh, with g,h non units 
in Q[X], by multiplicativity of primitive forms we have f = f0 = (g0)(h0), so f is reducible 
in Z[X]. QED.  

 

Remark: The previous lemma fails in one direction for non primitive polynomials; eg. 
3X+3 is reducible in Z[X] but not in Q[X].  It still holds in the other direction, as the next 
lemma shows. 

 

Lemma: If f in Z[X] is reducible in Q[X], f is also reducible in Z[X] and can be factored 
into factors of degree ≥ 1 in Z[X]. 

proof: If f = gh, with f in Z[X] and g,h of degree ≥ 1 in Q[X], then  



cf(f0) = f = gh = cgch(g0h0).  Thus cgch = cf is an integer, and f =  

cf(g0h0) is a factorization of f over Z[X] with degrees g0, h0 ≥ 1.  QED. 

 

Remark: Note that since Z is a domain, deg(fg) = deg(f) + deg(g), so constants in Z can 
have only constant factors, hence prime integers in Z are also irreducible in Z[X]. 

 

Now we can prove existence of factorization into irreducibles in Z[X].   

Lemma: Every non zero, non unit element of Z[X] can be factored into irreducible 
elements. 

proof: Let f be non zero, non unit in Z[X].  If f is in Z, then the previous remark shows 
the prime factorization in # gives a factorization into irreducibles in Z[X].  If deg(f)≥1, 
factor it as f = cf(f0).  Then f0 = ∏gi, with gi irreducible in Q[X].  By the previous 
lemmas, then f0 = ∏(gi)0, where the (gi)0 are primitive forms of the gi.  Then each (gi)0 
is a non zero rational multiple of gi, hence still irreducible in Q[X] and also primitive, 
hence irreducible in Z[X], by our lemma above.  Factoring cf = ∏pi into primes in Z 
gives us the factorization of f = ∏pi .∏(gi)0 into irreducibles in Z[X]. QED. 

 

Remark: Existence of irreducible factorizations is not really the hard part of the theory in 
this case, since we already know Z[X] is a noetherian domain, and it can be proved easily 
that factorization into irreducibles is always possible in any noetherian domain.  The 
uniqueness however is not always true in a noetherian domain.  The proof just given of 
existence of factorizations in Z[X] will also work in R[X] where R is a non noetherian 
ufd. 

We need one more technical property of primitive polynomials. 

Lemma: If f in Z[X] is primitive, and g is in Z[X], then f|g in Z[X] iff f|g in Q[X]. 

proof: If f|g in Z[X] then g = fh, for h in Z[X], hence also h in Q[X], so f|g in Q[X].  And 
if f|g in Q[X], then g = fh, for h in Q[X].  Then cg = cfch = ch, so ch = cg is an integer.  
Then h = ch (h0) is in Z[X], so f divides g in Z[X]. QED.  

 

Remark: Again one direction fails for non primitive polynomials, since 3X+3 divides 
X+1 in Q[X], but not in Z[X].     

 

The next property is the key to proving uniqueness of factorization. 



Lemma: If f,g,h are in Z[X], f is irreducible, and f|gh, then f|g or f|h. 

proof: First note that an integer c divides a polynomial F in Z[X] iff c divides all the 
coefficients of F, iff c|cF.  Hence if f is irreducible in Z[X] and an integer, f=p is prime in 
Z.  Then if p divides gh, p divides cgh = cgch, so p divides either cg or ch by the 
corresponding lemma in Z.  Hence f=p divides either g or h.  That settles this case.  

If deg(f) ≥ 1, then f irreducible implies f is primitive, hence f is also irreducible in Q[X] 
and divides gh also in Q[X].  Since the present lemma holds in Q[X], f divides either g or 
h in Q[X].  Since f is primitive, then f divides either g or h also in Z[X].  QED. 

 

Lemma: Factorization into irreducibles is unique in Z[X], up to order of factors and sign. 

proof(same proof as in Z): If ∏gi = ∏hj where all gi, hj are irreducible in Z[X], then g1 
divides the left side, hence also the right, so by the previous lemma g1 divides some hj 
which we may renumber as h1.  Since h1 is irreducible, and the only units in Z[X] are ±1, 
then h1 = ±g1.  Hence we may cancel g1 from both sides leaving (g2)(.....)(gn) = 
±(h2)(....)(hm).  Continuing with g2,....., we eventually cancel all terms.  I.e. there are the 
same number of g's and h's and after renumbering the indices, for every i, gi = ±hi.   

If you want the proof to appear more rigorous, use induction on the number n of factors 
gi.  If there is only one gi there can be only one hj since gi is irreducible.  This proves the 
result for n=1.  Assuming the theorem for n-1 factors gi, we are done after we cancel g1 
from both sides as above, since then by induction n-1 = m-1, hence n=m and the factors 
g2,....,gn must agree with the factors ±h2,....,hn up to order and multiplication by units. 
QED. 

 


