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1 Problem

An AC voltmeter is a device that measures the (peak) oscillating current I0 across a large
resistor R0 that is attached to leads whose tips, 1 and 2, may be connected to some other
circuit. The reading of the voltmeter (if properly calibrated) is Vmeter = I0(R0 + Rleads)
where Rleads � R0. AC voltmeters typically report the root-mean-square voltage Vrms =
I0(R0 + Rleads)/

√
2 rather than I0(R0 + Rleads).

Discuss the relation of the meter reading to the difference V1 − V2 in the scalar potential
V between points 1 and 2, and to the line integral

∫ 2

1
E · dl along the circuit being probed,

in the absence of the voltmeter.
First consider “ordinary” circuits operating at angular frequency ω for which:

1. The size of the circuit (and of the voltmeter leads) is small compared to the wavelength
λ = 2πc/ω, where c is the speed of light. In this case there is no spatial variation to
the current in any segment of a loop between two nodes;

2. Effects of wave propagation and radiation can be ignored;

3. Magnetic flux through the circuit is well localized in small inductors (coils).

Then, consider cases in which these restrictions are relaxed.
Show that while in general the meter reading is not equal to either V1 − V2 or

∫ 2

1
E · dl,

to a good approximation the reading is
∫ 2

1
E · dl if the conditions 1 and 2 are satisfied, and

to a similar approximation the reading is V1 − V2 if all three conditions are satisfied.1

To give a well-defined meaning to the potentials, work in the Lorenz gauge [2] (and SI
units) where the vector potential A(r, t) is related to the scalar potential V (r, t) by

∇ · A = − 1

c2

∂V

∂t
. (1)

1Circuits for which conditions 1 and 2 are satisfied can be well analyzed by Kirchhoff’s circuit law. Most
circuits analyzed this way also satisfy condition 3. For discussion of “paradoxical” exceptions, see [1].
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2 Solution

This problem has a long and erratic history [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. An un-
fortunate complication is that in the English-language literature of electrical engineering the
term “voltage” is (in this author’s view) inappropriately defined for time-varying situations
[16].2

The voltmeter as modeled above reports Vmeter = I0(R0 + Rleads), which equals the line
integral ∫ 2

1

E · dl (along meter leads) (2)

along the path of its conductors. To see this, note that for a cylindrical, resistive medium
of length l, radius r, and electrical conductivity σ that obeys Ohm’s law J = σE, where
J = I l̂/πr2 and I is the (uniform) axial current, then El = Jl/σ = Il/πr2σ = IR, and the
(axial) electrical resistance is R = l/πr2σ. Such line integrals were called an electromotive
force (EMF) by Faraday, which term we will use for them in this note.

In time-varying situations, particularly where there are large magnetic fields in the vicin-
ity of the circuit that is being probed by the voltmeter, the EMF (2) depends on the path
between points 1 and 2. However, in “ordinary” circuits (ones that satisfy the three condi-
tions given in sec. 1) there is very little magnetic flux linked by the loop that includes the
voltmeter, and the integral (2) is independent of the path to a good approximation. This
means that for such ”ordinary” circuits the electric field between points 1 and 2 can be
related to a scalar potential V according to E ≈ −∇V to a good approximation, such that

∫ 2

1

E · dl ≈ −
∫ 2

1

∇V · dl = V1 − V2. (3)

That is, when an AC voltmeter is used with an “ordinary” circuit it reads, to a good ap-
proximation, the voltage drop V1 − V2 between the electric scalar potential at the tips of its
leads.3

We confirm this result in sec. 2.3, after lengthy preliminaries in secs. 2.1 and 2.2. Sections
2.4-2.6 then illustrate how Vmeter is often quite different from V1 − V2 when the meter leads
are comparable in length to λ or when radiation and wave propagation are important (such
that there are significant magnetic fields in the vicinity of the circuit). Some comments
about alternative conventions for defining the potentials are given in the Appendix.

2The ambiguous meaning of “voltage” is noted, for example, in [17].
3Some people [16] then use the term “voltage drop” to describe any integral of the form (2), although

only in electrostatics does this integral equal the difference in the voltage (= the value of the electric scalar
potential). In time-varying examples the line integral (2) depends, in general, on the path of integration,
and does not have a value that depends only on the voltage at its end points. It appears that calling the
path-dependent integral (2) a “voltage drop” has the unfortunate consequence that many people infer that
voltage (electric scalar potential) does not have a well-defined meaning in time-varying situations. On the
other hand, in applications of Kirchhoff’s circuit law (35) to electrical networks it is convenient to assume
that a scalar voltage V can be assigned to each node such that EMF between nodes 1 and 2 equals V1 −V2,
although this is only approximately true. Altogether, the term “voltage drop” has come to be too loosely
interpreted.

A thoughtful commentary on the meaning of “voltage” in AC circuits is given in sec. 6.10 of [18].
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2.1 Scalar and Vector Potentials

In electrostatics the electric field E can be related to a scalar potential V , the voltage,
according to

E = −∇V (statics), (4)

and inversely,

Va − Vb = −
∫ a

b

E · dl (statics), (5)

expresses the fact that a unique voltage difference Va−Vb can be defined for any pair of points
a and b independent of the path of integration between them. The static electric field is said
to be conservative, and eqs. (4)-(5) are equivalent to the vector calculus relation

∇ × E = 0. (6)

In electrodynamics Faraday discovered (as later interpreted by Maxwell) that eq. (6)
must be generalized to

∇ × E = −∂B

∂t
, (7)

in SI units, which implies that time-dependent magnetic fields B lead to additional electric
fields beyond those associated with the scalar potential V . The nonexistence (so far as we
know) of isolated magnetic charges (monopoles) implies that

∇ · B = 0, (8)

and hence that the magnetic field can be related to a vector potential A according to

B = ∇ × A. (9)

Using eq. (9) in (7), we can write

∇ ×
(
E +

∂A

∂t

)
= 0, (10)

which implies that E + ∂A/∂t can be related to a scalar potential V as −∇V , i.e.,

E = −∇V − ∂A

∂t
(dynamics). (11)

We restrict our discussion to media for which the dielectric permittivity is ε0 and the
magnetic permeability is μ0. Then, using eq. (11) in the Maxwell equation ∇ · E = ρ/ε0

leads to

∇2V +
∂

∂t
∇ · A = − ρ

ε0
, (12)

and the Maxwell equation ∇× B = μ0J + ∂E/∂c2t leads to

∇2A − 1

c2

∂2A

∂t2
= −μ0J + ∇

(
∇ · A +

1

c2

∂V

∂t

)
. (13)
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We will work in the Lorenz gauge (1), such that the potentials obeys the differential
equations

∇2V − 1

c2

∂2V

∂t2
= − ρ

ε0
, and ∇2A − 1

c2

∂2A

∂t2
= −μ0J. (14)

The formal solutions to eq. (14) are the retarded potentials

V (r, t) =
1

4πε0

∫
ρ(r′, t′ = t − R/c)

R
dVol′, and A(r, t) =

μ0

4π

∫
J(r′, t′ = t −R/c)

R
dVol′,

(15)
where R = |r − r′|.

In situations where the charges and currents oscillate at a single angular frequency ω, we
write4

ρ(r, t) = ρ(r)e−iωt, J(r, t) = J(r)e−iωt, V (r, t) = V (r)e−iωt, and A(r) = A(r)e−iωt.
(16)

Then, the retarded potentials (15) can be written as

V (r) =
1

4πε0

∫
ρ(r′)eikR

R
dVol′, and A(r) =

μ0

4π

∫
J(r′)eikR

R
dVol′, (17)

where k = ω/c = 2π/λ.
If all distances R relevant to the situation are small compared to the wavelength λ (condi-

tion 1 of sec. 1), then kR � 1, and the potentials can be calculated to a good approximation
as

V (r) ≈ 1

4πε0

∫
ρ(r′)
R

dVol′, and A(r) ≈ μ0

4π

∫
J(r′)
R

dVol′ (R � λ). (18)

In this case the potentials in the region close to the circuit can be deduced from the in-
stantaneous charge and current distributions, i.e., effects of the finite speed of light are
ignored.5

2.2 EMFs in “Ordinary” Circuits with Inductance

In this problem we consider circuits that are driven by a voltage source V = V0e
−iωt, which

is a (compact) device with terminals at points, say, a (low-voltage terminal or cathode) and
b (high-voltage terminal or anode) such that the EMF of the source is6

V = −
∫ b

a

E · dl = Vb − Va +
d

dt

∫ b

a

A · dl, (19)

4We use the “physics” convention that oscillatory time dependence is written Re(e−iωt), with the real
part being implied. To convert to the “engineering” convention, Re(ejωt), replace i by −j throughout (where
i = j =

√−1).
5In this case the potentials close to the circuit are the same in the Lorenz gauge and in the Coulomb

gauge, such that mention of gauge conditions can be omitted in “ordinary” circuit analysis.
6In practice, the voltage source ensures the relation (19) only for a particular path in its voltage regulator.
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recalling eq. (11). Thus, a voltage source does not necessarily deliver a difference Vb − Va in
the scalar potential between its terminals whose value is equal to V . However, we will make
the usual approximation that in “ordinary” circuits the term in eq. (19) involving the vector
potential is negligible, so

V = −
∫ b

a

E · dl ≈ Vb − Va (“ordinary” voltage source). (20)

Greater care is required in specifying the nature of a voltage source in cases where radiation
is important [19].

The elementary example of a DC circuit is a constant-voltage source V connected to a
resistor R, in which case the steady current I in the circuit is given by Ohm’s law,

V = IR. (21)

We say that IR is the EMF across the resistor,

IR =

∫
resistor

E · dl. (22)

The circuit forms a loop, and an alternative formulation of the circuit law is that the
sum of the EMF s around that loop is zero. That is, the EMF across a resistor is IR, and
the EMF across the voltage source is

∫ b

a
E · dl = −V according to eq. (19). The circuit law

for this DC example follows from eq. (6), which can be expressed in integral form as

IR − V =

∫
resistor

E · dl +

∫ b

a

E · dl =

∮
loop

E · dl =

∫
loop

∇ × E · dArea = 0, (23)

invoking Stokes theorem of vector calculus, and noting that eq. (7) for a DC circuit implies
that ∇× E = 0.

If, however, the voltage source creates a time-dependent voltage V (t), then eq. (23) must
be modified according to eqs. (7) and (9) to read

IR − V =

∮
loop

E · dl =

∫
loop

∇ × E · dArea = − d

dt

∫
loop

B · dArea = −dΦM

dt

= − d

dt

∫
loop

∇ × A · dArea = − d

dt

∮
loop

A · dl, (24)

where

ΦM =

∫
loop

B · dArea =

∮
loop

A · dl (25)

is the magnetic flux due to the current I that passes through the loop.
The usual approximation in circuit analysis is to ignore effects of retardation in eq. (15)

(i.e., to ignore effects of radiation) and write

A(r, t) ≈ μ0

4π

∮
I(r′, t)

R
dl′ ≈ μ0I(t)

4π

∮
loop

dl′

R
, (26)
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where we also ignore possible variation of the current around the loop of the circuit. Then,
the magnetic flux (25) can be written

ΦM ≈ μ0I(t)

4π

∮ ∮
dl · dl′

R
= LI(t), (27)

where the geometric quantity

L =
μ0

4π

∮ ∮
dl · dl′

R
(28)

is the self inductance of the loop (which is independent of time if the shape of the circuit is
fixed).

The loop equation (24) can now be written7

IR − V ≈ −Lİ, or V ≈ Lİ + IR, (29)

where İ = dI/dt.8,9

7Equation (29) is only approximate because the path of the circuit between the terminals of the power
source is not the same as the internal path along which relation (19) is maintained.

8It is often said that EMF Lİ is the “inductive voltage drop” across the inductance of the loop. But,
it is wrong, in general, to say that Lİ is the voltage difference between the two ends of the inductor formed
by the loop, since the two “ends” of the loop are the same point and have the same voltage V .

These basic facts are obscured by the common practice of winding part of the conductor of the circuit
into a compact coil, so that most of the integral

∮
loop

A · dl = LI comes from this compact region. That
region, say from points 1 to 2, is often identified as the inductor in the circuit, and the inductance L is often
wrongly (but conveniently) considered to be a property of that compact portion of the circuit, rather than
of the circuit as a whole. Then, the “inductive voltage drop”

Lİ =
d

dt

∮
loop

A · dl ≈ d

dt

∫ 2

1

A · dl (30)

around the loop is often (mis)identified as a voltage difference between the two ends of the inductor, with the
implication that a scalar potential V can account for the behavior of inductors, as assumed in applications
of Kirchhoff’s circuit law to networks.

However, the error is slight for a typical inductor in the form of a coil of N turns, where N is large. In
this case the vector potential of the coil is azimuthal, with an axial component due only to the current in
the circuit outside the nominal coil. Then, along the axis of the coil, between points 1 and 2, we have that
E ≈ −∇V , such that V1 − V2 =

∫ 2

1
E · dl. That is, the EMF between the ends of the coil is very close to

the voltage drop V1 − V2 between them, with a fractional error of order 1/N .
9It is also wrong, in general, to describe the EMF IR as the difference in voltage/scalar potential

between the two ends of a resistor in a time-dependent situation. One way to see this is to use eq. (7) in
eq. (22),

IR =
∫

resistor

E · dl = ΔVresistor − d

dt

∫
resistor

A · dl, (31)

where ΔVresistor is the magnitude of the difference in the scalar potential between the two ends of the resistor.
For another way to see this, recall that Ohm’s law has the more basic form

J = σE, (32)

where σ is the electrical conductivity of the resistive medium, and E is the total electric field (11). Then,
the cylinder of radius r and length l has resistance

R =
l

πr2σ
(33)
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If the circuit includes a capacitor of value C , then the EMF across the capacitor is Q/C
where Q(t) is the magnitude of the electric charge on one of the plates of the capacitor.10 If
this capacitor is in series with the resistance R, the circuit equation (29) can be generalized
to the form

V ≈ Lİ + IR +
Q

C
. (35)

Such circuit equations are then said to obey Kirchhoff’s law that the sum of the EMF s
around any loop is zero.11

2.3 What an AC Voltmeter Measures

We can now give a fairly general discussion of what an AC voltmeter measures (besides its
internal EMF (2)) in an “ordinary” circuit (one that satisfies conditions 1-3 of sec. 1). That
is, we restrict our discussion to cases where the circuit is small compared to the wavelength
λ = 2πc/ω, where radiation can be ignored, and where effects of inductance are well localized
in inductors.

We consider a generic circuit with three series impedances driven by a voltage source
V0e

−iωt, as sketched below.12 The leads of the voltmeter are attached to the circuit at points
1 and 2, and the resistance R0 of the voltmeter is large compared to the magnitudes of the
impedances Z, Z ′ and Z12, and also large compared to the resistance Rleads of the leads. The
the reactance ωL0 associated with the self inductance L0 of the loop containing the meter is
also small in magnitude compared to R0.

for axial current flow I = πr2J . Then,

IR =
Jl

σ
= El = ΔVresistor − l

∂A
∂t

. (34)

10For a typical small capacitor the electric field between its electrodes has very little contribution from
the vector potential, so that E ≈ −∇V , and the EMF across the capacitor is very close to V1 − V2, the
difference in the scalar potential between the electrodes.

11Kirchhoff circuit law applies whenever conditions 1 and 2 of sec. 1 hold. The inductive term Lİ need
not be localized to an “inductor”, as illustrated in sec. 2.3.4. However, if condition 3 of sec. 1 is also satisfied,
then to a good approximation the EMF across a circuit element equals the difference in the scalar potential
between the ends of that element. Thus, Kirchhoff’s circuit law is not a basic law of physics, but a convenient
approximation that is not accurate in all situations. Examples of this are given in secs. 2.3.3 onwards.

12Describing a two-terminal device as having an impedance Z implies that it can be represented in a
circuit equation such as eq. (35) by a term IZ, where I is the current that flows between the two terminals,
and Z is a property only of the device between the two terminals. This approximation is not accurate,
for example, if one wishes to account for the effects of inductance in circuit with two parallel branches
that nominally contain only resistors and capacitors. But when the important effects of inductance are all
associated with tightly wound coils, the impedance concept is a good approximation.
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Faraday’s law for the meter loop gives

∮
meter loop

E · dl =

∫
R0

E · dl +

∫
leads

E · dl +

∫ 1

2

E · dl

= I0R0 + I0Rleads + V2 − V1 − iω

∫ 2

1

A · dl

= −dΦ0

dt
= iωMI − iωL0I0, (36)

where the path of the integral between points 1 and 2 is through the impedance Z12, and M
is the mutual inductance of the two loops. In obtaining eq. (36) we have used

∫ 1

2

E · dl =

∫ 1

2

(
−∇V − ∂A

∂t

)
· dl = V2 −V1 − d

dt

∫ 1

2

A · dl = V2 −V1 + iω

∫ 1

2

A · dl. (37)

The premise of the measurement is that the current I0 through the voltmeter is small
compared to the current I delivered by the voltage source. In this case the vector potential
A in the segment 1-2 is essentially that due to current I alone, and therefore

∫ 2

1

A · dl ≈ μ0

4π

∫ 2

1

∮
Itotal(r

′, t)
R

dl · dl′ ≈ μ0I

4π

∫ 2

1

∮
dl · dl′

R
≡ L12I, (38)

where the inductance L12 is that portion of the total inductance of the left loop associated
with segment 1-2. Because segment 1-2 is in common to both loops, the mutual inductance
M between these loops is, to a good approximation, the same as L12.

Thus, the meter reading Vmeter is

Vmeter = I0(R0 + Rleads) =

∫
R0

E · dl ≈ V1 − V2 + iω(M − L12)I − iωL0I0. (39)

Since ω(M − L12)I − ωL0I0 is a small quantity (if frequency ω is not too large), to a good
approximation the AC voltmeter measures the difference V1 − V2 in the scalar potential be-
tween points 1 and 2 (when the meter is present). When V1−V2 is very small (for example, if
points 1 and 2 are the same) the meter reads a small value of order |ω(M − L12)I − ωL0I0|.13

Referring to the figure on the preceding page, the usual circuit analysis is to say that (in
the absence of the voltmeter) the EMF across impedance Z12 is

IZ12 = IR12 − iωL12I = (V1 − V2)no meter ≈ (V1 − V2)meter present ≈ Vmeter, (40)

where we suppose that the impedance between points 1 and 2 is due a wire segment whose
portion of the total self inductance of the loop is L12 and whose resistance is R12. We have
also supposed that the resistance R0 of the meter is so large that the voltage difference
V1 − V2 is the same with and without the meter attached to the circuit under test.

13If the tips of the leads are touching then L12 = 0, and noting that I0 � I we have Vmeter ≈ ωMI =
ΦM = B Arealoop. Thus, an AC voltmeter in this configuration is better thought of as an ammeter or a
magnetic-field meter. See also secs. 2.4.3, 2.4.4 and 2.5.1.
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An AC voltmeter when used in an “ordinary” circuit measures, to a good
approximation, the difference V1 −V2 in the scalar potential at the position of the
tips of the leads in the absence of the meter. In this case the meter reading is also
approximately the EMF ∫ 2

1
E · dl along the test circuit.

In secs. 2.3.1 and 2.3.2 we give two examples of this behavior for “ordinary” circuits.
Section 2.3.3 considers a circuit that appears “ordinary” but is operated at a high frequency
such that the circuit is no longer small compared to a wavelength. Section 2.3.4 considers a
“small” circuit in which the induced EMF is not well localized.

2.3.1 An AC Voltmeter Connected Directly to an AC Voltage Source

As a first example we consider an AC voltmeter that is attached to a compact voltage source,
V0e

−iωt. The voltmeter is modeled as a large resistance R0 with two leads of resistance R/2
each, where R � R0. The connection of the leads to the terminals of voltage source forms a
loop whose area is small if the leads are parallel, but which could be large if the leads form
a circle. In any case, the self inductance L0 of this loop is taken to satisfy ωL0 � R0.

The impedance that the voltmeter presents to the voltage source is

Z = R0 + R − iωL0 ≈ R0, (41)

so the current I0e
−iωt in the voltmeter obeys

I0 =
V0

Z
≈ V0

R0

. (42)

The voltmeter observes this current and reports the measured voltage as

Vmeter = I0R0 ≈ V0. (43)

AC voltmeters typically report the root-mean-square voltage Vrms = V0/
√

2 rather than the
magnitude V0.

We now consider details of the scalar and vector potential, and of the electric field at the
loop. We restrict our discussion to the case of a circular loop for simplicity.

A key result is that the electric field in the leads equals the EMF divided by their length
a, i.e.,

Elead =
I0R

a
≈ V0R

aR0
. (44)

This field vanishes in the limit that the leads are ideal conductors. It takes some care to
account for this field as partly due to the scalar potential and partly due to the vector
potential.
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The scalar potential V at terminal 1 of the voltage source can be taken as zero. Then,
the scalar potential at terminal 2 is V0 (times e−iωt). However, the scalar potential at, say,
point 3 is not simply V0 − I0R/2. Rather, we use eq. (34) to find

V3 = V0 − ΔV = V0 − I0R

2
− a

2

∂A

∂t
, (45)

where a is the circumference of the loop.
The vector potential Ae−iωt at the loop is uniform around the (circular) loop and parallel

to the direction of the local current. Recalling eq. (25), the magnetic flux through the loop
is ΦM = L0I0 = Aa, where a is the circumference of the loop, so the vector potential at the
loop is

A =
L0I0

a
≈ L0V0

aR0
. (46)

Thus, the scalar potential (46) at point 3 is

V3 ≈ V0

(
1 − R

2R0
+

iωL

2R0

)
. (47)

Similarly, the scalar potential at point 4 is

V4 ≈ V0

(
R

2R0
− iωL

2R0

)
. (48)

The electric field at the loop has contributions from both the scalar and the vector
potentials,

E = EV + EA = −∇V − ∂A

∂t
. (49)

In particular, the electric field along the wire leads has a piece

EV =
V0 − V3

a/2
≈ V0

a

(
R

R0
− iωL0

R0

)
, (50)

while the contribution from the vector potential is

EA = −∂A

∂t
≈ V0

a

iωL0

R0

, (51)

Combining eqs. (50) and (51) we recover the simple result (44).

2.3.2 A 1:1 Transformer

To illustrate how an AC voltmeter reads, to a good approximation, the difference in the
electric scalar potential in the absence of the voltmeter, consider the circuit shown below. An
AC voltage source V0e

−iωt is connected to the primary of a 1:1 (lossless, isolating) transformer.
Initially, there is no load connected to the terminals, 1, 2, of the secondary. The conductors
in the circuit shown are approximated as having zero resistance.
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The role of the 1:1 transformer is to present a voltage drop between terminals 1 and 2
equal to the voltage drop V0e

−iωt of the power source. This voltage drop is equal, to a good
approximation to the difference in the electric scalar potential between terminals 1 and 2 (as
well as that at the terminals of the power source).

We digress a bit to verify the previous statements. Consider a loop that follows the path
of the secondary conductor, and then proceeds through the empty space between points 1
and 2, as sketched below.

Applying Faraday’s law to this loop,∮
secondary loop

E · dl = −dΦloop

dt
= iωΦloop = iωMI, (52)

where the magnetic flux Φloop = MI through the secondary loop is due to the magnetic
field in the primary loop associated with its current I , as quantified by the product of the
current and the mutual inductance M . For a 1:1 transformer the self inductances Lp and Ls

of the primary and secondary are very nearly equal, and differ only due to slightly differing
topologies to the paths that “complete the circuits”.14 Since in general LpLs = M2 we have
that Lp ≈ Ls ≈ M . When there is no load on the secondary it induces no back EMF on
the primary, so the current in the primary is simply I = iV0/ωLp. Thus,∮

secondary loop

E · dl = −M

Lp

V0 ≈ −V0. (53)

In the approximation of perfect conductors in the transformer, the tangential component of
the electric field is zero along the wire, so

∫
secondary wire

E · dl = 0, and hence the integral
along the path from point 1 to 2 is∫ 2

1

E · dl ≈ −V0 = V1 − V2 + iω

∫ 2

1

A · dl, (54)

recalling eq. (37). The vector potential A along the path from points 1 to 2 is essentially
zero, so long as the path does not enter the core of the transformer.15 So, for any practical

14For windings of 1000 turns about a core of (relative) permeability 1000, the self inductances Lp and Ls

of the primary and seconary will differ by roughly a part per million. This sets the scale of the accuracy of
the subsequent approximations.

15The transformer core is typically in the form of a torus, such that little/no magnetic field exists outside
the core.
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path outside the transformer we have that
∫ 2

1

E · dl ≈ −V0 ≈ V1 − V2. (55)

This confirms that the difference in the scalar potential between points 1 and 2 of the
secondary, in that absence of a load, equals the source voltage V0 to a good approximation.

However, this result raises an interesting point. The scalar potential at points 1 and 2
oscillates in time. This implies that the charge accumulation near these points oscillates in
time, which requires there to be a conduction current between points 1 and 2. This current
cannot flow in the empty space; rather there is an oscillating current I ′ in the secondary
conductor even under no-load conditions. The current I ′ must vanish at points 1 and 2,
but it is nonzero, and roughly uniform, along the winding of the secondary. This current
distribution is like that in a “linear” dipole antenna, and indeed the main physical process
in the secondary under no-load conditions is the radiation asssociated with the oscillating
current. This effect is extremely weak at frequencies such as 50-60 Hz, and is justifiably
neglected in typical circuit analysis.16

Now suppose that the AC voltmeter is connected to points 1 and 2 as sketched below.

There is now a current I0 in the secondary, which is essentially uniform along the sec-
ondary loop. The coupled-circuit analysis for currents I and I0 is

V0 = −iωLpI + iωMI0, (56)

0 = I0(R0 + Rleads) − iωLsI0 + iωMI, (57)

In the approximation that Lp = Ls = M we have simply that

I0 ≈ V0

R0 + Rleads
, (58)

and the AC voltmeter reads

Vmeter = I0(R0 + Rleads) ≈ V0 ≈ V1 − V2. (59)

As expected, the AC voltmeter reads, to a good approximation, the difference in the electric
scalar potential between points 1 and 2 in the absence of the meter.

2.3.3 A Single-Turn Inductor at High Frequency

As an illustration of how the reading of AC voltmeter can depart from the voltage drop in
the electric scalar potential at high frequencies, we consider a single-turn inductor in the

16The 1:1 isolation transformer might be considered as part of the output stage of the AC voltage source,
such that the output voltage is “floating”. This reminds us that an AC voltage source with no load can/should
also be considered as a small radiating system [19].
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form of a circular loop of circumference a, with resistance R uniformly distributed around
the loop, and self inductance L where R � ωL.17 This inductor is driven by a voltage source
V0e

−iωt, as sketched below.

Taking the scalar potential to be zero at terminal 1 of the voltage source, and to have
magnitude V0 at angle φ = 2π − ε, the magnitude of the scalar potential at point 3 at angle
φ is

V3 = V (φ) = V0
φ

2π
. (60)

The impedance of this circuit is

Z = R − iωL, (61)

so when driven by a voltage source V e−iωt the current Ie−iωt in the loop is

I =
V0

Z
=

V0

R − iωL
≈ iV0

ωL

(
1 − iR

ωL

)
(62)

The vector potential at the loop is

A =
ΦM

a
=

LI

a
≈ iV0

ωa

(
1 − iR

ωL

)
, (63)

where a is the circumference of the loop. The electric field tangential to the loop has
contribution EV = V0/a from the scalar potential, and

EA = −dA

dt
≈ −V0

a

(
1 − iR

ωL

)
. (64)

The total electric field tangential to the loop is

E = EV + EA ≈ V0

a

iR

ωL
, (65)

which vanishes in the limit of zero resistance for the loop.
Now suppose the AC voltmeter is connected to points 1 and 3.

17The self inductance L is of order μ0a where a is the radius of the loop, so ωL ≈ μ0ca/λ ≈ a/λ. Hence,
the condition that ωL is large implies that the size of the circuit is large compared to a wavelength.
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The two loops in the resulting configuration have self inductances L0 and L, and mutual
inductance M ≈ Lφ/2π since the flux through meter loop due to current I in the single-turn
inductor is largely due to the current on the segment 1-3, which segment is associated with
self inductance L13 ≈ Lφ/2π ≈ M .

Applying Faraday’s law to the meter loop, we have

∮
meter loop

E · dl =

∫
leads+R0

E · dl +

∫ 3

1

E · dl = −dΦ0

dt
= −iωMI + iωL0I0. (66)

The reading of the meter is

Vmeter = I0(R0 + Rleads) =

∫
leads+R0

E · dl. (67)

The EMF in the segment 1-3 is

∫ 3

1

E · dl = (I0 − I)R13 ≈ −IR
φ

2π
≈ − iR

ωL
V3, (68)

which is tiny compared to ωMI . Altogether,

I0(R0 + Rleads − iωL0) ≈ −iωMI ≈ V0
M

L
= V0

φ

2π
= V3, (69)

and the meters reads

Vmeter ≈ V3
R0 + Rleads

R0 + Rleads − iωL0
. (70)

If ωL0 � R0, then the meter would read approximately the scalar potential V3 at point 3.
But for high enough frequencies the impedance R0 + Rleads − iωL0 of the meter is almost
purely reactive, and the meter would read iR0V3/ωL0, which is essentially zero.

This illustrates the claim that an AC voltmeter will read the difference in the electric
scalar potential only if the frequency is not too high. For high frequencies, both the meter
reading and

∫ 3

1
E ·dl are small, but the meter reading is roughly R0/R times the line integral,

since L0 ≈ L.
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2.3.4 A Surprising “DC” Circuit

Even in circuits where the currents of interest are constant it is possible that a voltmeter
does not read the difference in the electric scalar potential between the tips of its leads. We
illustrate this with an example given by W. Lewin of MIT.18

The circuit is illustrated in the figure below. The central loop contains two resistors, R1

and R2. A solenoid magnet inside the central loop produces a time-varying magnetic field
B(t) = B0t through the loop,19 and creates an EMF around the loop

E0 = −Φ̇ = −B0Area. (71)

As a result, DC current

I =
E0

R1 + R2
(72)

flows in the central loop.

Two identical voltmeters with internal resistance R0 � R1, R2 probe the central circuit,
the first connecting to points a and b, and the second connecting to points c and d. The
positive leads of the voltmeters are attached to points a and c, which defines the sense of
currents I1 and I2 to be as shown. We suppose that no magnetic flux from the solenoid
passes through outer loops 1 and 2.

Kirchhoff’s circuit equations for the three loops are

E0 = (I + I1)R1 + (I − I2)R2 + Lİ ≈ (R1 + R2)I + R1I1 −R2I2, (73)

0 = I1R0 + (I1 + I)R1 ≈ R1I + R0I1, (74)

0 = I2R0 + (I2 − I)R2 ≈ −R2I + R0I2, (75)

on neglect of the small EMF Lİ . Solving these three simultaneous linear equations for the
currents, we find

I ≈ E0

R1 + R2
, I1 ≈ − E0R1

R0(R1 + R2)
, I2 ≈ E0R2

R0(R1 + R2)
. (76)

The meter readings are therefore,

Vmeter1 = I1R0 ≈ − E0R1

(R1 + R2)
, Vmeter2 = I2R0 ≈ E0R2

(R1 + R2)
. (77)

18http://www.youtube.com/watch?v=eqjl-qRy71w&NR=1
http://www.youtube.com/watch?v=1bUWcy8HwpM&feature=related

19The current in the solenoid varies linearly with time, so taken as a whole, this circuit is not strictly DC.
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The meter readings do not depend on where the leads are connected, and in particular if the
two meters are connected at the same points, a = c and b = d, their readings are different.20

This is surprising in that we might have expected that the (perfectly conducting) wires are
equipotentials.

However, the proper assumption is that the electric field tangential to the wires is zero
(in the limit of perfectly conducting wires). Indeed, Since B = ∇×A, we have from Stoke’s
theorem that

∮
A · dl =

∫
B · dArea = Φ, so the azimuthal component Aφ of the vector

potential is given by

Aφ =
Φ

2πr
, (78)

where r is the radius of the central loop. In the present example the magnetic flux Φ through
the central loop has contributions from the magnetic fields due to the currents I , I1 and I2,
as well as from the solenoid. However, only the contribution from the solenoid is significant.

Furthermore, the azimuthal electric field Eφ is related to the potentials V and A by

Eφ = −1

r

∂V

∂φ
− ∂Aφ

∂t
, (79)

Applying this to wire segments in the central loop, for which Eφ = 0, we have that

∂V

∂φ
= −r

∂Aφ

∂t
= − Φ̇

2π
=

E0

2π
, (80)

recalling eq. (71), and so the scalar potential along a wire segment has the form

V (φ) = V0 +
E0φ

2π
(81)

where φ increases for counterclockwise movement around the loop.
The voltage drops across resistors R1 and R2 are

ΔV1 ≈ IR1 ≈ E0R1

(R1 + R2)
, ΔV2 ≈ IR2 ≈ E0R2

(R1 + R2)
, (82)

if the azimuthal extent of the resistors is negligible, and we now move in a clockwise sense
around the loop. In this convention the voltage drops along each of the wire segments of the
central loop are −E0/2, so the total voltage drop around the loop is zero, as expected for
the scalar potential. Finally, the voltage drops between the points where the voltmeters are
attached to the central loop are

Va − Vb ≈ E0φ1

2π
− E0R1

(R1 + R2)
, Vc − Vd ≈ −E0φ2

2π
+

E0R2

(R1 + R2)
. (83)

Only if the meter leads are connected directly to the ends of resistors R1 and R2 (as would
be good practice) do the meter readings equal the voltage differences between the tips of the
leads.

For further discussion of this example, see [1], which contains reference to works by others
that consider what a voltmeter measures.

20If both voltmeters were connected to the main loop from the left, or both from the right, then the two
meter readings would be the same; namely −E0R1/(R1 + R2) when on the left and E0R2/(R1 + R2) when
on the right. They differ only when one meter is connected from the left and the other from the right.
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2.4 An AC Voltmeter Far from a Dipole Antenna

2.4.1 Straight Leads and an Electric Dipole Antenna

In the preceding examples (except for sec. 2.3.3) we have considered the use of voltmeters in
situations in which the leads are short compared to the wavelength λ = 2πc/ω and in which
wave propagation and radiation can be ignored. We now consider a case where the leads
are still short but effects of wave propagation are important. In particular, consider an AC
voltmeter with large resistance R0 and straight leads of length h � λ, as sketched on the
following page.

This voltmeter is placed at distance r � λ (i.e., in the far zone) from an antenna whose
oscillating electric dipole moment is pe−iωt, and the leads of the antenna are oriented to be
perpendicular to the vector r from the antenna to the voltmeter. Thus, the electric field E0

due to the dipole antenna (in the absence of the voltmeter) is parallel to the leads.

The voltmeter is in effect a dipole receiving antenna with a high resistance between its
terminals. The EMF across the terminals will be essentially the same as if the resistance
R0 were infinite, i.e., the open-circuit voltage. This voltage has been discussed elsewhere
[20], and the simple result is that

Vmeter ≈ E0h. (84)

The resulting current I0 = Vmeter/R0 through the meter is so small that the fields produced
by this current, and that in the leads of the voltmeter, have negligible effect on the distant
dipole antenna.

What is the relation between Vmeter and the potentials of the distant antenna?
In the far zone of a dipole antenna with dipole moment pe−iωt the electric and magnetic

fields are [21]

E ≈ k2(r̂ × p) × r̂
ei(kr−ωt)

r
, B ≈ k2

c
(r̂ × p)

ei(kr−ωt)

r
= ∇ × A ≈ ik r̂ × A, (85)

and the corresponding potentials (in the Lorenz gauge) are

A ≈ −i
k

c
p

ei(kr−ωt)

r
, V =

−ic

k
∇ · A ≈ −c r̂ · A ≈ −ikp · r̂ei(kr−ωt)

r
. (86)

The electric field strength due of the oscillating dipole p at the voltmeter is

E0 =
k2p sin θ

r
, (87)
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and the magnitude of scalar potential at points 1 or 2 on the voltmeter is

V1,2 ≈ kp cos θ1,2

r
≈ E0

k sin θ

(
cos θ ± h

r
sin θ

)
, (88)

noting that θ1,2 ≈ θ ∓ h/r. Thus, the difference in the scalar potential between those two
points is

V1 − V2 ≈ 2E0h

kr
� E0h ≈ Vmeter, (89)

since kr = λ/2πr � 1 in the far zone.
In sum, when an AC voltmeter is used as a receiving antenna in the far zone of a dipole

transmitting antenna, the reading of the voltmeter is very large compared to the voltage
difference between the tips of the leads in the absence of the meter. The AC voltmeter
does measure the local electric field strength of the distant antenna, and if the distance r
and wavelength λ are known the local potential difference can be calculated from the meter
reading according to

V1 − V2 ≈ λ

πr
Vmeter. (90)

2.4.2 Straight Leads and a Magnetic Dipole Antenna

The distant dipole antenna might well be a loop antenna with oscillating magnetic dipole
moment me−iωt. In this case the electric and magnetic fields in the far zone is given by

E ≈ k2(m × r̂)
ei(kr−ωt)

r
, B ≈ k2

c
(r̂ ×m) × r̂

ei(kr−ωt)

r
= ∇ × A ≈ ik r̂ × A, (91)

and the corresponding potentials (in the Lorenz gauge) are

A ≈ −ik(m× r̂)
ei(kr−ωt)

r
, V =

−ic

k
∇ · A ≈ −c r̂ · A ≈ 0. (92)

That is, there is no scalar potential in the far zone of a magnetic dipole transmitting antenna.
If the AC voltmeter is oriented so that its leads are parallel to the local electric field E0

of the antenna, whose magnitude is

E0 =
k2m sin θ

r
, (93)

the meter reading will be
Vmeter ≈ E0h. (94)

just if the transmitting antenna were an electric dipole antenna. Since there is no scalar
potential in the far zone of a magnetic dipole antenna, we learn that a nonzero reading on
an AC voltmeter does not necessarily imply a nonzero voltage difference between the tips of
the meter leads.

Indeed, from a single reading of the AC voltmeter in the far zone of an antenna, we cannot
tell whether that antenna was an electric or a magnetic dipole antenna. Only if we are able
to move the voltmeter around enough to map out the pattern of the vector polarization of
the electric field can we distinguish the two types of antennas.
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2.4.3 Looped Leads and an Electric Dipole Antenna

We now consider the case that the leads of the voltmeter form a circular loop, with points
1 and 2 being the same, as shown in the figure below.

Clearly the potential difference V1−V2 is zero, but the meter can have a nonzero reading.
We orient the loop formed by the leads such that the local electric field E0 of the distant elec-
tric dipole antenna lies in the plane of the loop. Then, the magnetic field, whose magnitude
is

B0 =
k2p sin θ

cr
=

E0

c
, (95)

according to eqs. (85) and (87), is perpendicular to the loop. Faraday’s law tells us that the
EMF around the loop is

∣∣∣∣−dΦm

dt

∣∣∣∣ =
ωB0h

2

π
= E0h

kh

π
= I0R0 = Vmeter. (96)

2.4.4 Looped Leads and a Magnetic Dipole Antenna

If the transmitter is a magnetic dipole antenna, and the leads of the voltmeter form a circular
loop whose plane is parallel to the local electric field E0, then the meter reading is again

Vmeter =

∣∣∣∣−dΦm

dt

∣∣∣∣ =
ωB0h

2

π
= E0h

kh

π
, (97)

where

B0 =
k2m sin θ

cr
=

E0

c
. (98)

Not only does V1 − V2 = 0 in this case, but V1 = V2 = 0, as discussed in sec. 2.3.2.

2.5 An AC Voltmeter Near a Half-Wave Dipole Antenna

We now consider an example that contrasts to the preceeding ones by having the leads of
the voltmeter be comparable in length to the wavelength λ = 2πc/ω. A half-wave dipole
antenna has arms of length a ≈ λ/2 such that the impedance Z presented by the antenna
to the voltage source V0e

−iωt is purely real and approximately 70 Ω. The AC voltmeter of
impedance R0 � 70 Ω is positioned a distance d away from the antenna, with leads of length
h ≈ a parallel to the arms of the antenna, as shown in the figure on the next page.

We recognize this configuration as similar to that of a Yagi antenna. That is, even though
very little current I0 will flow through resistor R0, significant standing wave currents will
exist in the leads of the voltmeter, which cause substantial changes in the radiation pattern
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of the antenna. The reading Vmeter = I0R0 will not readily be expressible in terms of the
scalar potential or the currents in the antenna in the absence of the voltmeter.

To predict the behavior of the voltmeter, I used the NEC4 simulation [22] with the LD
command to generate a resistance R0 of 1 megohm. Results are given in Table 1 for a drive
voltage V0 = 1 volt.

The first line of Table 1 simulates a voltmeter with short leads connected close to the
voltage source, which makes a small perturbation in the antenna impedance Z and results
in a reading of Vmeter = V0. As longer leads are used to connect the meter to points farther
out on the arms of the antenna, the effect on the antenna impedance grows strong, and
the meter reading rises to 2 V and then falls back to 1 V. Because the input impedance is
affected when the voltmeter is connected to the antenna, it is clear that the meter reading
does not represent the voltage difference V1 − V2 in the absence of the voltmeter.

If the leads of the meter do not make contact with the antenna, but they remain extended
to form a kind of receiving antenna, there is little effect on the antenna impedance, and the
meter reading falls off as the meter is moved away from the antenna. The last six lines
of Table 1 show that for a voltmeter with very short leads (h = 0.1 m = λ/500) that are
oriented along the direction of the electric field, the meter readings are close to E0h, where
E0 is the field strength at the position of resistor R0 in the absence of the meter. This
behavior was anticipated by eq. (84) of sec. 2.4.1.

NEC4 does not at present have an option to display the scalar and vector potentials in the
near zone, so we cannot immediately relate the meter readings to the potentials. However,
the examples of sec. 2.3 alert us that we should not expect Vmeter to equal V1 − V2, although
the meter reading will be of the same order as the potential difference.

2.5.1 A Small Voltmeter Connected to a Dipole Antenna

The preceding discussion indicates that when the length of the leads of the voltmeter is a
significant fraction of a wavelength the fields and potentials are significantly perturbed. If
the voltmeter and leads are small compared to a wavelength they will not perturb the fields
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Table 1: NEC4 [22] simulations of an AC voltmeter with R0 = 1 megohm
near a half-wave dipole antenna with a = 5 m, driven by a 1-volt rf source.
The antenna impedance Z is calculated in the presence of the voltmeter. The
meter voltage Vmeter is the current I0 in the meter segment times R0. The
electric field E is calculated at the position of resistor R0 but when the meter
is absent.

h d Z Vmeter E

0.3 m 0.02 m 79 + 3.5i Ω 1.0 V connected
1.25 0.02 72 + 1.5i 1.5 connected
2.5 0.02 65 − 36i 2.0 connected
3.75 0.02 67 − 176i 1.3 connected
5 0.02 78 − 965i 1.0 connected

0.3 0.02 73 0.32
1.25 0.02 75 0.59
2.5 0.02 74 0.73
3.75 0.02 72 0.86
5 0.02 72 1.0
5 1 70 0.72
5 2 72 0.46
5 4 72 0.26

0.01 0.05 72 0.034 2.96 V/m
0.01 0.25 72 0.0076 0.67
0.01 0.5 72 0.0038 0.34
0.01 1 72 0.0024 0.22
0.01 2 72 0.0017 0.16
0.01 4 72 0.0014 0.13

and potentials very much. If the voltmeter is connected to the antenna can it then report
differences in the scalar potential at the surface of the antenna conductors?

Recalling the discussion around eqs. (36)-(39), the voltmeter will report a reliable measure
of the difference V1 − V2 in the scalar potential between the contact points 1 and 2 provided
the mutual inductance M of the loop formed by the voltmeter leads and the segment 12 of
the test circuit is equal to the self inductance L12 of that segment.21 In more detail, we need
that

MI = L12I =

∫ 2

1

A · dl, (99)

according to eq. (38). If the antenna conductor has radius R, and the distance between
points 1 and 2 along the antenna conductor is d12, and the voltmeter is at a (small) distance

21If the leads of the voltmeter lie on, or inside of, the antenna conductor, then E ·dl = 0 everywhere along
the conducting path of the voltmeter circuit. In this case I0R0 = 0 according to eq. (36), and the voltmeter
will read zero, even though V1 − V2 is nonzero.
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D from that conductor, then the mutual inductance between the antenna and the voltmeter
loop is related by

MI = Φloop ≈
∫ D

R

μ0I

2πr
d12 dr =

μ0d12I

2π
ln

D

R
. (100)

The vector potential Az at the surface of the antenna conductor can be estimated from the
thin-wire approximation (see eqs. (13)-(14) of [23]) as

Az(z) ≈ μ0Z tan ka I(z)

8π
≈ μ0V0

8π

sin[k(a − |z|)]
cos ka

, (101)

where a is the length of each arm of the dipole antenna, Z is its input impedance, and V0 is
the drive voltage. Then, ∫ 2

1

A · dl ≈ μ0d12Z tan ka I

8π
, (102)

which bears little relation to the product MI of eq. (100). Hence, the voltmeter will not
report the difference V1 − V2 in the scalar potential.

Rather, for an antenna made with good conductors,
∫ 1

2
E · dl ≈ 0, so eq. (36) indicates

that
Vmeter = I0R0 ≈ ωMI. (103)

That is, the meter will sample the current distribution,

I(z) ≈ V0

Z

sin[k(a − |z|)]
sin ka

, (104)

which decreases with increasing z, rather than the scalar potential (eq. (74) of [23]) at the
surface of the antenna conductor,

V (z) ≈ V0

2

cos[k(a − |z|)]
cos ka

, (105)

which increases with z and is very large for a half-wave dipole (ka ≈ π/2).
Using NEC4, I have simulated the response of a small voltmeter with R0 = 1 MΩ,

d12 = 0.1 m and D = 0.01 m when connected to a half-wave dipole antenna with a = 5 m,
R = 0.001 m and ω = 91 MHz. The meter readings decrease with distance from the
feedpoint, and are roughly equal to ωMI(z) where M ≈ 46 nH according to eq. (100).

2.6 An AC Voltmeter Connected to a Two-Wire Transmission

Line

We now consider a long two-wire transmission line made of wires of radius a whose centers
are separated by 2d, as sketched below.

22



The capacitance per unit length is [24]

C =
πε0

ln d+
√

d2−a2

a

, (106)

and the inductance per unit length is [25]

L =
1

c2C
=

ε0μ0

C
=

μ0

π
ln

d +
√

d2 − a2

a
≈ μ0

π
ln

2d

a
. (107)

The line is driven at one end by voltage source V0e
−iωt, and terminated at its other end by

a resistor whose resistance equals the characteristic impedance Z0 of the line,

Z0 =

√
L

C
=

√
μ0

πε
ln

d +
√

d2 − a2

a
= 120Ω ln

d +
√

d2 − a2

a
. (108)

Then, the scalar potential at the two wires is

Vwire(z, t) = ±V0

2
ei(kz−ωt), (109)

where k = ω/c = 2π/λ, which varies with position along the wires even though they are
assumed to be perfect conductors. The scalar potential outside the wires is [26]

V (x, y, z, t) =
V0

4

ln
(x+

√
d2−a2)

2
+y2

(x−√
d2−a2)

2
+y2

ln d+a+
√

d2−a2

d+a−√
d2−a2

ei(kz−ωt), (110)

in a rectangular coordinate system where the wires are centered at (x, y) = (±d, 0). The
vector potential A has only a z component (for a very long transmission line) which follows
from the Lorenz gauge condition (1) as

Az(x, y, z, t) =
V (x, y, z, t)

c
. (111)

Can an AC voltmeter measure differences in the scalar potential (109) when the leads are
connected to points 1 and 2 on one of the wires of the transmission line that are separated
by a substantial fraction of a wavelength, as shown in the figure above?

As when a voltmeter is connected to an antenna, the leads in effect become antennas
that perturb the current flow in the transmission line, and cause the system to radiate. The
reading of the meter will not have a well-defined relation to the scalar potential along the
transmission line in the absence of the voltmeter.

To illustrate this I ran a NEC4 simulation of a transmission line made from wires of
1 mm radius with 10 mm separation, so the characteristic impedance of the line is nominally
275 Ω. NEC4 found the impedance to be purely real when the line was driven at 300 MHz
and terminated in 260 Ω, in which case only 2% of the input power was radiated. Then,
when a voltmeter (with resistance of 1 megohm and leads of length 2λ each) was connected
to the transmission line at points λ/2 apart, the input impedance of the system jumped to
790 + 120i Ω, and 70% of the input power was radiated away. Furthermore, the reading on
the voltmeter was 1.8V0, rather than V0/2 as desired.
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Appendix: Other Choices of the Gauge

An interesting review of gauge conditions is given in [28]. Here, we summarize a few facts
about the so-called Coulomb gauge, and we introduce a variant that we label as the static-
voltage gauge.

Coulomb Gauge

The relations

E = −∇V − ∂A

∂t
, and B = ∇ × A (112)

between the electric and magnetic fields E and B and the potentials V and A permits various
conventions (gauges) for the potentials. In the preceding sections of this note we have always
used the Lorenz gauge,

∇ · A = − 1

c2

∂V

∂t
(Lorenz). (113)

In situations with steady charge and current distributions (electrostatics and magneto-
statics), ∂V/∂t = 0, so the condition (113) reduces to

∇ · A = 0 (Coulomb). (114)

Even in time-dependent situations it is possible to define the vector potential to obey
eq. (114), which has come to be called the Coulomb gauge condition. Then, eq. (12) be-
comes Poisson’s equation,

∇2V = − ρ

ε0
, (115)

which has the formal solution

V (r, t) =
1

4πε0

∫
ρ(r′, t)

R
dVol′ (Coulomb), (116)

where R = |r − r′|, in which changes in the charge distribution ρ instantaneously affect the
potential V at any distance.

It is possible to choose gauges for the electromagnetic potentials such that some of their
components appear to propagate at any specified velocity v [29, 30].

For completeness, a formal solution for the vector potential in the Coulomb gauge is

A(r, t) =
μ0

4π

∫
Jt(r

′, t′ = t − R/c)

R
dVol′ (Coulomb), (117)

where the transverse current density is defined by

Jt(r, t) =
1

4π
∇ × ∇×

∫
J(r′, t)

R
dVol′. (118)

Unless the geometry of the problem is such that the transverse current density Jt is easy to
calculate, use of the Coulomb gauge is technically messier than the use of the Lorenz gauge,
in which case the potentials are given by eq. (15).
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Analysis of circuits is often performed in the quasistatic approximation that effects of
wave propagation and radiation can be neglected. In this case, the speed of light is taken
to be infinite, so that the Lorenz gauge condition (113) is equivalent to the Coulomb gauge
condition (114), and the potentials are calculated from the instantaneous values of the charge
and current distributions. As a consequence, gauge conditions are seldom mentioned in
“ordinary” circuit analysis.

The Helmholtz Decomposition and the Coulomb Gauge

Helmholtz (1858) showed how any (well-behaved) vector field, say E, that vanishes at infinity
obeys the mathematical identity [27]

E(r) = −∇
∫ ∇′ · E(r′)

4πR
dVol′ + ∇ ×

∫ ∇′ ×E(r′)
4πR

dVol′, (119)

where R = |r − r′|. Time does not appear in this identity, which indicates that the vector
field E at some point r (and some time t) can be reconstructed from knowledge of its
vector derivatives, ∇ ·E and ∇×E, over all space (at the same time t). The main historical
significance of this identity was in showing that Maxwell’s equations, which give prescriptions
for the vector derivatives ∇ · E and ∇ × E, are mathematically sufficient to determine the
field E.

The Helmholtz decomposition (119) can be rewritten as

E = −∇V + ∇ ×A, (120)

where

V (r) =

∫ ∇′ · E(r′)
4πR

dVol′, and A =

∫ ∇′ × E(r′)
4πR

dVol′. (121)

It is consistent with usual nomenclature to call V a scalar potential and A a vector
potential. That is, Helmholtz decomposition lends itself to an interpretation of fields as
related to derivatives of potentials.

Can we use the Helmholtz decomposition as a practical tool for calculating the electric
field?

Not in its basic form as given in eqs. (119)-(121), because to use these forms without
other input one would have to know the field E everywhere, so as to be able to calculate
∇ ·E and ∇×E everywhere, so that one could carry out the integrals in eq. (119) to deduce
the field E at point r. However, if one already knows E everywhere, there is no need to carry
out the Helmholtz decomposition to determine E.

Can we use the Helmholtz decomposition + Maxwell’s equations to calculate the field E?

Maxwell tells us that

∇ · E =
ρ

ε0
, and ∇× E = −∂B

∂t
, (122)

where ρ is the electric charge density and B is the magnetic field.
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If we insert these physics relations into eq. (121), we have

V (r) =

∫
ρ(r′)
4πε0R

dVol′, (123)

A(r) = − ∂

∂t

∫
B(r′)
4πR

dVol′. (124)

The scalar potential (123) is calculated from the instantaneous charge density, which is
exactly the prescription (116) of the Coulomb gauge. That is, Helmholtz + Maxwell implies
use of the Coulomb-gauge prescription for the scalar potential.

However, eq. (124) for the vector potential A does not appear to be that of to the usual
procedures associated with the Coulomb gauge. Comparing eqs. (120)-(121) and (124), we
see that we could redefine the symbol A to mean

A(r) = ∇ ×
∫

B(r′)
4πR

dVol′ =

∫
∇ 1

R
× B(r′)

4π
dVol′ = −

∫
∇′ 1

R
× B(r′)

4π
dVol′

=

∫ ∇′ ×B(r′)
4πR

dVol′ +
∫

∇′ × B(r′)
4πR

dVol′ =

∫ ∇′ × B(r′)
4πR

dVol′ +
∮

dArea′ × B(r′)
4πR

=

∫ ∇′ ×B(r′)
4πR

dVol′, (125)

provided B vanishes at infinity. Then, we have

E = −∇V − ∂A

∂t
, (126)

which is the usual way the electric field is related to a scalar potential V and a vector potential
A. Note also that eq. (125) obeys the Coulomb gauge condition (114) that ∇ · A = 0.

In view of the Maxwell equation ∇ · B = 0, we recognize eq. (125) as the Helmholtz
decomposition B = ∇ ×A for the magnetic field.

We can go further by invoking the Maxwell equation

∇ × B = μ0J +
1

c2

∂E

∂t
, (127)

where J is the current density vector, so that

A(r) =
μ0

4π

∫
J(r′)
R

dVol′ +
∂

∂t

∫
E(r′)
4πc2R

dVol′. (128)

This is still not a useful prescription for calculation of the vector potential, because the
second term of eq. (128) requires us to know E(r′)/c2 to be able to calculate E(r). But, c2

is a big number, so E/c2 is only a “small” correction, and perhaps can be ignored. If we do
so, then

A(r) =
μ0

4π

∫
J(r′)
R

dVol′, (129)

which is the usual instantaneous prescription for the vector potential due to steady currents.
Thus, it appears that practical use of the Helmholtz decomposition + Maxwell’s equations is
largely limited to quasistatic situations, where eqs. (123) and (129) are sufficiently accurate.
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Of course, we exclude wave propagation and radiation in this approximation. We can
include radiation and wave propagation if we now invoke the usual prescription, eqs. (117)-
(118), for the vector potential in the Coulomb gauge. However, this prescription does not
follow very readily from the Helmholtz decomposition, which is an instantaneous calculation.

Note that in the case of practical interest when the time dependence of the charges and
currents is purely sinusoidal at angular frequency ω, i.e., e−iωt, the Lorenz gauge condition
(1) becomes

V = − ic

k
∇ ·A. (130)

In this case it suffices to calculate only the vector potential A, and then deduce the scalar
potential V , as well as the fields E and B, from A.

However, neither the Coulomb gauge condition ∇ ·A = 0 nor the Lorenz gauge condition
(1) suffices, in general, for a prescription in which only the scalar potential V is calculated,
and then A, E and B are deduced from this. Recall that the Helmholtz decomposition tells
us how the vector field A can be reconstructed from knowledge of both ∇ · A and ∇ × A.
The gauge conditions tell us only ∇ · A, and we lack a prescription for ∇ × A in terms of
V .

[In 1 dimension, ∇ × A = 0, so in 1-dimensional problems we can deduce everything
from the scalar potential V plus the gauge condition. But life in 3 dimensions is more
complicated!]

Static-Voltage Gauge

It is also possible to (re)define the scalar potential V to have no time dependence, such that
the time-varying part of the electric field is entirely due to the vector potential A.

Suppose that the charge and current densities ρ and J consist of time-independent terms
plus terms with time dependence e−iωt. That is,

ρ = ρ0 + ρωe−iωt, and J = J0 + Jωe−iωt. (131)

We can choose that the scalar potential V = V0 + Vωe−iωt obeys the static relation

∇2V = −ρ0

ε0
, Vω = 0, (132)

provided the vector potential A + A0 + Aωe−iωt obeys the gauge condition

∂

∂t
∇ · A = −iω∇ · Aωe−iωt = −ρωe−iωt

ε0
, (133)

i.e.,

∇ · Aω = − iρω

ε0ω
. (134)

We also choose that the time-independent part A0 of the vector potential satisfies the usual
condition of magnetostatics,

∇ · A0 = 0, (135)

27



in which case the vector potentials obeys the relations

∇2A0 = −μ0J0, and ∇2Aω + k2Aω = −μ0Jω − i∇ρω

ε0ω
. (136)

The formal solutions to equations (132) and (136) are

V (r) =
1

4πε0

∫
ρ0(r

′)
R

dVol′, (137)

A0(r) =
μ0

4π

∫
J0(r

′)
R

dVol′, (138)

and

Aω(r) =
μ0

4π

∫
Jω(r′)eikR

R
dVol′ +

i

4πε0ω

∫ ∇ρω(r′)eikR

R
dVol′ , (139)

where R = |r − r′|.
While the forms (137)-(139) are not used in practice, they show how it is possible to

define the scalar potential V to be purely static, such that the time-dependent voltage Vω is
always zero.
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