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1 Differentiation in a Nutshell

There are many terms and special cases, which deal with the process of
differentiation. The basic idea, however, is the same in all cases: something
non-linear, as for instance a multiplication, is approximated by something
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linear which means, by something we can add. This reveals already two
major consequences: addition is easier than multiplication, that’s why we
consider it at all, and as an approximation, it is necessarily a local property
around the point of consideration.

Thus the result of our differentiation should always be a linear function
like the straight lines we draw in graphs and call them tangents. And our
approximation will get worse the farther away we are from the point we
considered. That’s the reason why these ominous infinitesimals come into
play. They are nothing obscure, but merely an attempt to quantify and get
a hand on the small deviations of our linear approximation to what is really
going on.
To begin with, let’s clarify the language:

differentiation− certain process to achieve a linear approximation

to differentiate− to proceed a differentiation

differential− infinitesimal linear change of the function value

differentiability− condition that allows the process of differentiation

derivative− result of a differentiation

derivation− linear mapping that obeys the Leibniz rule

to derivate− to deduce a statement by logical means

All these terms are context sensitive and their meanings change, if they
are used, e.g. in chemistry, mechanical engineering or common language.
But even within mathematics, the terms may vary among different authors.
E.g. differential has two meanings, as adjective or as notation for df, i.e. the
infinitesimal linear change on the function values. Differentials are used in
various applications with varying meanings and even with different mathe-
matical rigor. This is essentially true in calculus where

∫
f(x)dx and df(x)

dx
is

only of notational value. The most precise meaning of the term can be found
in differential geometry as an exact 1−form. As a thumb rule might serve:
diff... refers to the process, derivative to the result.

As differentiability is a local property, it is defined on a domain U which
is open, not empty and connected, at a point x0 or z0 in U . I will not
mentioned these requirements every time I use them. They are helpful, as
one doesn’t have to deal with isolated points or the behavior of a function
on boundaries and one always has a way to approach x0 from all sides. So
with respect to the approximation which is intended, they come in naturally.
I also won’t distinguish between approximations from the left or from the
right, since this article is only an overview. So it is always meant as identical
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from both sides. Moreover, a function is said to be in C(U) = C0(U) if it
is continuous, in Cn(U) if it is n−times continuously differentiable, and in
C∞(U) =

⋂
n∈NC

n(U) if it is infinitely many times continuously differen-
tiable. The latter functions are also called smooth.

1.1 Real Functions in one Variable: R
A function f : R→ R is differentiable at x0, if the limit

lim
x→x0

f(x)− f(x0)

x− x0

= lim
v→0

f(x0 + v)− f(x0)

v
= lim

∆x→0

f(x0 + ∆x)− f(x0)

∆x

exists, which is then called the derivative of f at x0 and denoted by

f ′(x0) =
d

dx

∣∣∣∣
x=x0

f(x)

This is the definition we learn at school. But I think it hides the crucial point.
There is another way to define it, which describes much better the purpose
and geometry of the concept, Weierstraß’ decomposition formula:

f is differentiable at x0 if there is a linear map J , such that

f(x0 + v) = f(x0) + J(v) + r(v) (1)

where the error or remainder function r has the property, that it converges
faster to zero than linear, which means

lim
v→0

r(v)

v
= 0

The derivative is now the linear function J(.) : R → R which approxi-
mates f at x0 with a (more than linear) error function r. This function is e.g.
quadratic as in the Taylor series. Both functions may depend on x0 which
plays the role of a constant parameter for them.

1.2 Real Functions in many Variables: Rn

Here another advantage of the last definition becomes obvious. If our function
is defined on real vector spaces, say f : Rn → Rm, how could we divide
vectors? Well, we can’t. So the definition

f(x0 + v) = f(x0) + J(v) + r(v)
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comes in handy, because it has none. We can directly use the same formula
without any adjustments. We only have to specify, what ”the remainder
r(v) converges faster to zero than linear” means. Since we’re not especially
interested in it except it’s general behavior at zero, we simply require

lim
v→0

r(v)

||v||
= 0

which is more out of practicability to quantify ”faster than linear” than
it is an essential property. The essential part is the linear approximation
J(.) : Rn → Rm which is why differentiation is done for. Again both functions
may depend on the constant x0.

We can also see, that now the direction of v comes into play, which makes
sense, since the tangents are now tangent spaces, planes for example. And
a plane has many different slopes, generated by two coordinates. It makes
a lot of a difference whether we walk on a hill surrounding it, or climbing
it. Therefore the process above is called total differentiation and J(.) the
total derivative, because it includes all possible directions. In standard
coordinates it is the Jacobian matrix of f(x) in Mm×n(R).

If we are only interested in one special direction, then we get the direc-
tional derivative. We can take the same definition, only that v is now
a specified vector pointing in a certain direction. This means that we ap-
proximate f only in one direction. Our directional derivative as linear ap-
proximation therefore depends only on one vector v and it can be written as

J(v)(f(x)) = v · f(x) = ~vτ · ~f(x) =< v, f(x) > which maps a vector f(x) to
its part of the slope in direction of v. In this case, the directional derivative
is also written as:

J(v) = Dvf(x) = ∇vf(x) = ∂vf(x) =
∂f(x)

∂v
= f ′v(x) (2)

If f is also totally differentiable, then additional notations are in use:

J(v) = Df(x)v = Dfx v = grad f(x) · v = ∇f(x) · v = (v · ∇)f(x) (3)

A directional derivative is often defined for scalar functions f : Rn → R,
i.e. m = 1. This isn’t really a restriction, because one could always simply
take all components of f = (f1, . . . , fm). Furthermore they are also often
defined for unit vectors v0 as direction and then as the limit of 1

t
(f(x0 + t ·

v0)− f(x0) for t→ 0. However, there is no need to do this. It’s a matter of
taste and only means, that we have to divide by ||v|| if scales like coordinates
are involved.
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From here partial derivatives are obviously simply the directional deriva-
tives in the various variables x1, . . . , xn of f , the coordinates of Rn.
The dependencies among these differentiability conditions are as follows:

continuous partially differentiable,
i.e. all partial derivatives are continuous

⇓
totally differentiable or differentiable for short

⇓
differentiable in any direction

⇓
partially differentiable

All implications are proper implications. (Counter-) Examples are (from
Wikipedia):

f(x, y) =

{
(x2 + y2) · sin 1

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

is totally differentiable but not continuous partially.

f(x, y) =

{
3x2y−y3
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

is differentiable in all directions, but they don’t define a linear function J .

f(x, y) =

{
xy3

x2+y4
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

is differentiable in all directions, and they define a linear function J , but
it is not totally differentiable, because the remainder term doesn’t converge
to zero.

f(x, y) =

{
2xy
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

is partially differentiable but not all directional derivatives exist.

1.3 Complex Functions: C
Complex functions f : U → C are somehow special and entire textbooks deal
with the complex part of analysis. So I will restrict myself to a brief listing
of terminology and dependencies. What appears to be more complicated at
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first glance is to some extend even easier than in the real case. To begin
with, I like to mention, that we haven’t used any specifically properties of R
in the previous sections apart the Euclidean norm and directions. However,
both is given over C as well, and all we have to think about is, that linearity
in our definition

f(x0 + v) = f(x0) + J(v) + r(v) (4)

now means C−linearity of J . A complex differential function is called holo-
morphic function and in older literature sometimes regular function.
As regularity is widely used in various areas of mathematics, it should be
avoided here. A function which is holomorphic in the entire complex plane
U = C is called an entire function or an integral function. These are
strong requirements, which means that we sometimes need a weaker condi-
tion, namely one that allows us to consider poles. Poles are isolated points,
at which functions are not defined. Therefore a function, which is holomor-
phic on U except at its poles, is called a meromorphic function.

It might be due the many different terms in complex analysis, which
sometimes leads to the impression, that the complex case is more difficult
than the real case. I think this is mainly for historical reasons and the need
to have useful adjectives for certain properties. Until now I’ve neglected the
representation of functions by series, which have - beside their practical ad-
vantages - often been the historically first approach to deal with the various
concepts. Their names are:

• Power series
∞∑
n=0

an(x− x0)n

• Laurent series
∞∑

n=−∞

an(x− x0)n

• Taylor series
∞∑
n=0

1

n!
· f (n)(x0) · (x− x0)n
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• Maclaurin series
∞∑
n=0

1

n!
· f (n)(0) · xn

Now it has to be considered, as some functions in complex analysis are called
analytic. Although often used in the context of complex valued functions,
analytic can equally be defined for real valued functions.

Let K ∈ {R,C} be either the real or complex numbers and f : U → K.
Then f is called analytic at x0, if there is a power series

∞∑
n=0

an(x− x0)n (5)

that converges to f(x) in a neighborhood of x0. If f is analytic in every point
of U , then f is called analytic without the emphasis on any points. Analytic
functions are smooth, i.e. in C∞(U). This implication is proper, as the real
function

f(x, y) =

{
exp(−x−2) if x 6= 0

0 if x = 0

is smooth everywhere, but not analytic at zero.

How do all these definitions relate to each other? C is a two dimensional
real vector space and the defining equations are the same. The only differ-
ence is the C− linearity of J . However, this is a quite powerful difference:
A function f : U → C with f(x + iy) = u(x, y) + iv(x, y) is holomorphic
(differentiable) at z0 = x0 + iy0 if f is totally differentiable as function on R2

and the derivative J is a C−linear mapping. This means that

J =

∂u∂x ∂u
∂y

∂v
∂x

∂v
∂y

 =

[
ux uy
vx vy

]
is represented by a skew-symmetric matrix w.r.t. the basis {1, i}, i.e. that
for f the Cauchy-Riemann (differential) equations hold

ux =
∂u

∂x
=
∂v

∂y
= vy and uy =

∂u

∂y
= −∂v

∂x
= vx (6)

In a neighborhood U of z0 ∈ C a function f(x+ iy) = u(x, y) + iv(x, y) is
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holomorphic at z0

⇐⇒
once complex differentiable at z0, i.e. f ∈ C1(U)

⇐⇒
infinite many times complex differentiable at z0, i.e. f ∈ C∞(U)

⇐⇒
analytic at z0 (locally)

⇐⇒
u and v are at least once real totally differentiable at (x0, y0) and satisfy the

Cauchy-Riemann differential equations (6)

⇐⇒
f is real totally differentiable at (x0, y0) and ∂f

∂ζ
= 0

with the Cauchy-Riemann operator ∂ζ = 1
2

(
∂
∂x

+ i ∂
∂y

)
⇐⇒

f is continuous at z0 and its path integral over any closed, simple connected
(0-homotopic), rectifiable curve γ in U is identically zero:

∮
γ
f(z)d(z) = 0

Cauchy’s integral or Cauchy-Goursat theorem (7)

⇐⇒

if U0 is a circular disc in U with center z0 then for z ∈ U0 holds

Cauchy’s integral formula f(z) =
1

2π i

∮
∂U0

f(ζ)

ζ − z
dζ (8)

2 Generalizations Beyond R and C
As mentioned in the section of complex functions, the main parts of defining
a differentiation process are a norm and a direction. So to extend the differ-
entiation concepts on normed vector spaces seems to be the obvious thing to
do.

2.1 Fréchet Derivative

Definition: Let X and Y be two Banach spaces, i.e. normed real or complex
vector spaces, which are complete as normed topological spaces, and U ⊆ X
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an open subset. A function

f : (U, ||.||X) −→ (Y, ||.||Y )

is Fréchet differentiable at x0 ∈ U if there is a continuous linear operator
J : X → Y such that

lim
v→0

||f(x0 + v)− f(x)− J(v)||Y
||v‖|X

= 0 (9)

The operator J is called the Fréchet derivative of f at x0 and is written
J = Dfx0 = Df(x0) indicating the dependence of the linear approximation
at x0.
Sometimes it is only required that X , Y are normed vector spaces, but
as limits are involved, it is more convenient to require Banach spaces, i.e.
complete spaces. Also the continuity requirement is new here, as it is not
automatically the case and continuous functions are the natural (homo-
)morphisms in the category of topological spaces. Taking a closer look on
this limit reveals, that the similar (equivalent) change to the definition can
be made as in the real case. Therefore we consider (as always)

f(x0 + v) = f(x0) + J(v) + r(v) (10)

with a faster than linear vanishing term r(v) and note, that the Fréchet
derivative is unique, if it exists. This also means that the Fréchet derivative
coincides with the usual derivative in finite dimensional spaces, where the
linear operator J can be represented by the Jacobian matrix. Whereas in
the finite dimensional case all linear operators are Fréchet differentiable, in
the infinte dimensional case only and exactly the bounded linear operators
are Fréchet differentiable, unbounded are not.

2.2 Gâteaux Derivative

2.2.1 The Directional Derivative

The Gâteaux derivative is a generalization to normed vector spaces, too, the
directional derivative. Let f : (X, ||.||X) −→ (Y, ||.||Y ) be a function on Ba-
nach spaces, x0 a point in an open neighborhood U ⊆ X and v a directional
vector in (X, ||.||X).
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Unfortunately this is were the easy part gets to a hold. I chose X, Y to
be Banach spaces for the sake of simplicity. Usually they are only required
to be locally convex, normed vector spaces. This is already an indicator of
the difficulty we will face: the additivity of Gâteaux derivatives.

The English Wikipedia [20] defines (remember that df is the differential, J
the derivative)

”At each point x0 ∈ U , the Gâteaux differential defines a function df(x0, .) =
Jx0 : X → Y which is homogeneous, i.e. Jx0(α · v) = α · Jx0(v). However,
this function need not be additive, so that the Gâteaux derivative may fail to
be linear, unlike the Fréchet derivative. Even if linear, it may fail to depend
continuously on v if X and Y are infinite dimensional. Furthermore, for
Gâteaux derivatives that are linear and continuous in v, there are several
inequivalent ways to formulate their continuous differentiability.”

The German version [19] defines
”If df(x0, .) is a continuous, linear functional, i.e. the function v 7→ Jx0(v) is
homogeneous, additive and continuous, then it is called a Gâteaux derivative
at x0.”

Well, René Gâteaux has been a French mathematician, so let’s have a look
on the French Wikipedia [21]

”The Gâteaux derivative of f at x0 in the direction of v is the limit in Y (so
it exists)”

Jx0(v) = lim
t→0
t 6=0

f(x0+tv)−f(x0)
t =

d

dt

∣∣∣∣
t=0

f (x0 + tv) (11)

where the variable t is taken real ... The function f is Gâteaux differen-
tiable at x0 if there is a linear, continuous operator Jx0 : X → Y such that
v 7→ Jx0(v) exists for all v ∈ X”

Maybe it’s best to handle it like nlab [18] which links directly to their
definition of directional derivatives or as in a paper from Texas Tech [13]
in which they don’t bother linearity within the definition either. What’s all
in common is the fact that the Gâteaux derivative definition isn’t unique,
but always generalizes the concept of a directional derivative to infinite di-
mensional normed vector spaces of some kind, local convexity as minimal
requirement.

11



2.2.2 Definitions and Examples

We assume the same conditions as in the previous section. Let f : X → Y be
a function on Banach spaces, x0 ∈ U ⊆ X a point at which we differentiate
and v ∈ X a direction in which we differentiate.

Definition [Weierstraß]: A linear function J : X → Y such that

f(x0 + v)− f(x0) = J(v) + r(||v||X) (12)

with r(t) vanishing faster than linear is called Gâteaux derivative Jx0 at x0.

Definition [Variational Derivative]: The Gâteaux derivative of f at x0

in the direction of v is the limit in Y with real t

Jx0(f )(v) = lim
t→0
t6=0

f (x0 + tv)− f (x0)

t
=

d

dt

∣∣∣∣
t=0

f (x0+ tv)

(13)

Second Variation

d2 f (x0; v) =
d2

dt2

∣∣∣∣
t=0

f (x0 + t · v) (14)

Derivatives of higher orders are defined accordingly. Also derivatives from
the left or from the right are sometimes distinguished when dealing with
Gâteaux derivatives.
Linearity and Continuity

Let’s consider the function f : R2 → R

f(x, y) =

{
x3

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Then f is Gâteaux differentiable with the derivative
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J(0,0)((a, b)) =

{
a3

a2+b2
if (a, b) 6= (0, 0)

0 if (a, b) = (0, 0)

at (0, 0) in the direction (a, b) according to the variational definition. J(0,0) is
even continuous, however, f is not Gâteaux differentiable in the Weierstraß’
sense, because J(0,0) is not linear. Note that it is still homogeneous, i.e.
J(0,0)(αv) = αJ(0,0)(v).

Next consider the space of real, smooth functions on [0, 1] ⊆ R. That is

X = C∞R ([0, 1])

equipped with the uniform norm, the supremum norm

||f || = sup
x∈[0,1]

{|f(x)|}

and Y = (R, |.|). Then the derivative-at-zero operator T (f) := f ′(0) is

linear, closed, but not continuous. (Consider the sequence fn(x) = sin(n2x)
n

which converges uniformly to f ≡ 0 but (T (fn))n∈N does not.)

As the completeness condition of the normed vector spaces play an important
role here, too, the general advice when using the Gâteaux derivative has to
be: Make sure which definition you use and what the exact nature of the
normed vector spaces are (locally convex, complete, Banach, etc.)

Connection to the Fréchet Derivative

If f is Fréchet differentiable at x0 with Fréchet derivative Jx0,F then f is also
Gâteaux differentiable in all directions v and for the Gâteaux differential
df(x0; v) holds

df(x0; v) = Jx0,G(f)(v) = JG(f)(v) = Jx0,F (f)(v) (15)

Especially JF (f) = JG(f). In general, the opposite direction does not hold,
i.e. from Gâteaux differentiability cannot be concluded Fréchet differentia-
bility. Since the finite dimensional real case is a special case of both concepts,
this was to be expected.

If f is Gâteaux differentiable in a neighborhood U of x0, such that Jx,G(v) is
continuous (in x) and linear, and the operator

JG(f) : U → L(X, Y )

JG(f) : x 7→ (v 7→ Jx,G(f)(v)) (16)
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is continuous with respect to the operator norm on the space of linear func-
tions L(X, Y ), then f is also Fréchet differentiable. It is not a necessary
condition, so we have the real finite dimensional case again as a special case.

Lagrange Formalism

Let us define the function

f(ε) :=

∫
dt L(q(t) + εδq , q̇(t) + εδq̇ , t) (17)

For the Gâteaux differential we get as first order approximation (*) and by
partial integration (with constant endpoints of integration ti) and thus a
vanishing δq(ti) term in the anti-derivative (**)

δf = Jδq(f)

=

∫
dt Jδq(L)

=

∫
dt lim

ε→0

1

ε
(L(q(t) + εδq , q̇(t) + εδq̇ , t)− L(q(t) , q̇(t) , t))

(∗)
=

∫
dt

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
(∗∗)
=

∫
dt
∂L

∂q
δq −

∫
dt

(
d

dt

∂L

∂q̇

)
δq

(18)

By the variation principle this means

Jδq(L) =
∂L

∂q
δq −

(
d

dt

∂L

∂q̇

)
δq

or

δL

δq
=
∂L

∂q
−
(
d

dt

∂L

∂q̇

)
(19)

3 Lie Derivative - Preliminaries

In this section we go even further with our generalizations. The main reason
to consider differentiation processes is to calculate a linear approximation
of non-linear objects. So far we regarded functions of normed linear spaces,
i.e. (non-linear) equations which described curves and other analytic vari-
eties. What they all had in common was, that they took place in an outer
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frame, normed vector spaces like Rn or Banach spaces. The frame brought
with it the coordinates in which points and directions have been expressed.
It was one of the greatest achievements in differential geometry to abandon
this restriction: what if there is no outer frame like in General Relativity?
Carl Friedrich Gauß had been obliged as land surveyor of the Kingdom of
Hanover. The earth isn’t flat either nor is it naturally placed in an outer Eu-
clidean frame. So mathematicians started to consider the analytic varieties
which they called manifolds by themselves. Coordinates became local prop-
erties of the manifold, which is sufficient as we deal with local phenomena in
differential geometry anyway. Outer frames were no longer needed to solve
the problems within or on the manifolds.

3.1 Manifolds

Definition [5]: An m-dimensional mainfold (sometimes shortly m-manifold)
is a set M , together with a countable collection of subsets Ui ⊆ M , called
the coordinate charts, and 1 : 1 functions χ : Ui → Vi onto connected open
subsets Vi of Rm, called local coordinate maps, which satisfy the following
properties:

The coordinate charts cover M. ⋃
i

Ui = M (20)

On the overlap of any pair of coordinate charts Ui ∩ Uj the composite map

χj ◦ χ−1
i : χi(Ui ∩ Uj)→ χj(Ui ∩ Uj) (21)

is a smooth (infinitely differentiable) function.

(c) If xi ∈ Ui , xj ∈ Uj are distinct points of M , then there exist open
subsets Wi of χi(xi) in Vi and Wj of χj(xj) in Vj such that

χ−1
i (Wi) ∩ χ−1

j (Wj) = ∅ (22)

The coordinate charts endow the manifold M with the structure of a topo-
logical space. Equation (22) is basically a restatement of the Hausdorff sep-
aration axiom.

The overlapping functions χj ◦χ−1
i determine the degree of differentiability of

the manifold. If they are smooth (C∞) diffeomorphisms on open subsets of
the corresponding Euclidean space Rm then the manifold is called smooth,
if they are real analytic functions, then the manifold is called analytic. Sim-
ilar is true for the other differentiation classes Ck.
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It is important to note, that the manifold M isn’t part of Rm. As a set
it is defined without any reference to a Euclidean space in which it might
or might not be embedded. With the usual standard examples: M = Rm,
M = Sn or M a torus, there might be some surrounding Euclidean space
in our imagination, but things change if we consider Lie Groups as mani-
folds instead, i.e. manifolds which carry an analytic group structure, means
inversion and multiplication are analytic functions. Or if you like, the uni-
verse. The role of Rm in the definition is therefore not to characterize the
manifold globally, but locally instead. A manifold behaves locally in an open
neighborhood of a point like an open set in the Euclidean space Rm where
we can use charts of M as we use flat roadmaps to find our routes through
a mountainous countryside.

3.2 Vector Fields

Definition [3]: A vector field X on a m-dimensional manifold M is a
mapping, that assigns to each point p ∈ M a vector X(p) = Xp. If the Xp

are tangent to M , then X is called a tangent vector field, if the Xp are
perpendicular to M , then X is called a normal vector field. Usually if not
defined otherwise, the term vector field always refers to the tangent field.

In physics we often distinguish between vector fields and scalar fields. The
difference is, that in case of a scalar field, there is a scalar (number) as-
signed at each point of the manifold. Temperatures on earth are a standard
example for a scalar field, whereas the meteorologic wind chart represents
a vector field, because at each point on earth there is a wind vector with a
direction and a magnitude attached. Well, at least almost everywhere ac-
cording to the Hairy-Ball-Theorem. This leads us directly to some important
vector fields.

The gradient of a real valued function f : U → R , U ⊆ Rn

∇f(x0) = grad(f)(a) =

(
∂

∂x1

f(x0), . . . ,
∂

∂xn
f(x0)

)
(23)

defines a gradient (vector) field F = ∇f . The mapping x0 7→ ∇f(x0)
determines the linear function

f ′(x0)(v) =
n∑
i=1

vif
′(x0)(ei) =

n∑
i=1

viδif(x0) = δvf(x0) = 〈∇f(x0), v〉 (24)
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The gradient field is a special case of a tangent field. Basically all derivatives
introduced so far have been tangent fields: x0 7→ Jx0(v).

Another important vector field in the Euclidean three-dimensional space is
given by the curl operator or rotation. Let F : U → R3 , U ⊆ R3 be a
partially differentiable vector field. Then the curl defines a new vector field

curlF = rotF = ∇× F (25)

An example of a scalar field in this context is the divergence of a vector
field F defined by scalar or dot product

divF = ∇ · F (26)

Combined, i.e.
∆f = ∇2f = ∇ · ∇f (27)

they define the Laplace operator: the divergence of the gradient field.

To define a Lie derivative, we could shortly say: it’s the multiplication in a
Lie algebra. No manifolds, no vector fields. Of course this wouldn’t meet the
requirements to actually understand what it is, because it meant to define
Lie derivatives by one aspect of the resulting function, rather than by it’s
motivation. Therefore we need some more terminology.

3.3 Flows

A curve γ : [a, b] → X on a vector field V of the set X is defined by the
property d

dt

∣∣
t=t0

γ(t) = V (γ(t0)). If V is Lipschitz continuous, i.e. the over-
lapping charts are, then for each point x ∈ X there is a unique differentiable
curve γx such that for some ε > 0

γx(0) = x and
d

dt

∣∣∣∣
t=t0

γx(t) = V (γx(t0)) , t ∈ (−ε,+ε) ⊆ R (28)

These curves γx are called integral curves or trajectories or flow lines
of the vector field V and they partition X into equivalence classes.

We speak of a flow on a vector field as the set of all these curves, and

γγx(t)(s) = γx(s+ t) or more convenient γ(γ(x, t), s) = γ(x, s+ t) (29)

holds, i.e. it doesn’t matter, whether we first move by t and then by s
along the curve or vice versa. Flows are usually required to be compatible
with structures endowed on X, which means in our case, that the curves
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γx(t) must be continuous (in both arguments). If X is equipped with a
differentiable structure, then they are required to be differentiable as well.
In these cases the flow forms a one parameter subgroup of homeomorphisms
and diffeomorphisms, respectively. Local flows are the curves in an open
neighborhood of a certain point x0.

4 Some Topology

Whereas the terminology of vector fields, trajectories and flows almost by
itself suggests its origins and physical relevance, the general treatment of
vector fields, however, require some abstractions. The following might ap-
pear to be purely mathematical constructions, and I will restrict myself to a
minimum, but they actually occur in modern physics: from the daily need
to solve differential equations on various (non Euclidean) geometric objects
like in general relativity or quantum field theory, to the front end research in
cosmology.

4.1 Vector Bundles

The tangents on a manifold M define a vector field in a natural way. That
is, at each point x ∈M there are the tangents to all possible curves through
x and they span the tangent (vector) space TM |x at this point. If M is an
m-dimensional manifold, then TM |x is an m-dimensional vector space with
the local coordinates ∂

∂x1
, . . . , ∂

∂xm
. Now we consider the collection of all these

tangent spaces, i.e. for all points of M . This gives us a collection

TM =
⋃
x∈M

TM |x (30)

which we call tangent bundle of M . This can be generalized to an arbitrary
vector field, in which case it is called a vector bundle. Note that these ob-
jects are actually tangent space bundles, resp. vector space bundles.

Definition: A real (complex) vector bundle, K ∈ {R,C}, is a triple
(E,X, π) which consists of

• two topological spaces E, the total space, and X, the base space,

• a continuous projection π : E → X, the bundle projection,

• and Ex = π−1(x) is endowed with the structure of a finite-dimensional
real (complex) vector space for every x ∈ X, the fiber of x,
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together with the following local compatibility conditions:
For every point in x ∈ X, there is an open neighborhood U of x, a natural
number n, and a homeomorphism

η : U ×Kn → E|U = π−1(U) ⊆ E (31)

such that for all x ∈ U ,
(π ◦ η)(x, v) = x (32)

for all v ∈ Kn and the map
v 7→ η(y, v) (33)

establishes a linear isomorphism between the vector spaces Kn and Ey =
π−1(y) for each y ∈ U .

The open neighborhood U together with the homeomorphism η is called
a local trivialization (U, η) of the vector bundle. It means, that the
bundle projection π behaves locally like the projection of U × Kn onto U .
This guarantees, that the dimension of all fibers of a connection component
of a point x ∈ X is the same. If it is the same number n for the entire
topological space X, then the vector bundle E = (E,X, π) is of rank n.

Note that the notation in (30) is also the notation of the tangent bundle of
a manifold M by its total space TM , whereas TxM denotes a single fiber at
x ∈M . The total space is not denoted as a pair (M,T(.)M) to avoid the false
expression of a Cartesian product. The tangent bundle (field) on a manifold
is often simply referred to as vector bundle (field) on M .

Vector bundles of rank 1 are called line bundles. A vector bundle of the
form (X × Kn, X, proj1) is called a trivial vector bundle. I think the
easiest non trivial vector bundle is the line bundle of a Möbius strip, which is
locally homeomorph to U ×R with an open set U ⊆ S1 of a circle. The twist
guarantees, that it is nontrivial, because a global structure (S1×R, S1, proj1)
would define a cylinder.

The most important vector bundles when dealing with derivatives are tangent
bundles TM = (TM,M, π) of (smooth) manifolds M . As their fibers are the
tangent spaces at points x ∈M they are vector spaces V = TxM , which have
dual spaces V ∗ = HomK(V,K) , K ∈ {R,C}, of all linear functions to their
underlying scalar field.
If we assign each point x its dual tangent space, the cotangent space T ∗xM
we will get the dual vector bundle, here the cotangent bundle

T ∗M = (T ∗M,M, π) =
⋃
x∈M

T ∗xM =
⋃
x∈M

HomK(TxM,K) (34)
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If we drop the requirement on the fibers Ex = π−1(x) to be a vector space,
which was motivated by tangent spaces, and substitute it by the requirement,
that the fibers are all homeomorphic to another topological space F , then
(E,X, π, F ) is called a fiber bundle. Vector bundles are a special case of
fiber bundles. One can express fiber bundles by the short exact sequence

F
ι
� E

π
� X (35)

If we have in addition a continuous operation (E,G) → E of a topologi-
cal group, e.g. a Lie group, on the total space E of a fibre bundle, then
(E,X, π, F,G) is called a principal bundle, if the group operation maps
each fiber Ex on itself, i.e. π(xg) = π(x) for all x ∈ E , g ∈ G, the group
operates freely (only g = 1 ∈ G leaves points in a fiber invariant) and transi-
tive (all points y ∈ Ex in a fiber can be reached by some g ∈ G). G is called
structure group of the principal bundle.

4.2 Sections

One can think of a fiber bundle E = (E,X, π, F ) as a topological base
space X to which at each of its points x a fiber Ex is attached and the
bundle projection π maps each fiber to its base point. Now we consider
the opposite direction: a pairing of a base point with some point of its
fiber. This generalizes somehow the concept of the graphs of functions f we
draw, which are also a pairing (x, f(x)) of base points and certain points
in another dimension. In the case of functions, the graphs are part of a
Cartesian product, which we don’t have here, except for trivial bundles. If
we think of a fiber bundle of something similar as the spines of a hedgehog
(line bundle), and the bundle projection along the spines to the point where
they grow out of the hedgehog, then we are now interested in a cut through
all spines.

Definition: Let E = (E,X, π, F ) be a fiber bundle. A global section in
E is a continuous function σ : X → E such that for all x ∈ X

(π ◦ σ)(x) = π(σ(x)) = x (36)

Thus σ is a right inverse to the bundle projection π. We denote the set of
all global sections of E by

Γ(X,E) = Γ(E) (37)
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If U ⊆ X is an open set, then a continuous function σ : U → E is called a
local section of E, if it satisfies equation (36) on U , i.e. is a global section
on (E,U, π, F ),.

In case E is a smooth fiber bundle on a smooth manifold X and σ : X → E
a smooth function, then it is called a smooth section and the set of all
smooth sections of E is sometimes denoted by Γ∞(E).

If C ⊆ X is a compact set, and σ ∈ Γ(X,E) a section of a vector bundle E
such that σ(x) = (x, 0) whenever x /∈ C, then σ is called a section with
compact support and we denote the set of all sections with a compact
support by ΓC(X,E) = ΓC(E) or Γ0(X,E) = Γ0(E).

4.3 Pullbacks

Assume we have some kind of mapping m : X → Y . This could be literally
everything: an operator, a morphism in any category, tensor fields, connec-
tions, Lie derivatives on fiber bundles etc. Now if there is an object somehow
related to Y , it is natural to ask, whether there is something similar related
to X which respects the ways along m and back. It is easy if m is a bijective
morphism, but what can be said in general? This leads us to the concepts of
pullbacks.

Definition: Let X and Y be topological spaces, ϕ : X → Y a continuous
function and E = (E, Y, π) a fiber bundle over Y . Then the fiber bundle
defined by

ϕ∗E = {(x, e) ∈ X × E |ϕ(x) = π(e)} ⊆ X × E (38)

equipped with the subspace topology and the projection map

π∗ : ϕ∗E → X , π∗(x, e) = x (39)

is called the pullback bundle (ϕ∗E,X, π∗). Let ψ : ϕ∗E → E be the
projection onto the second factor, then the following diagram commutes:

ϕ∗E
ψ−→ E

π∗ ↓ ↓ π
X

ϕ−→ Y

(40)

ϕ∗E is now a fiber bundle over X. The bundle ϕ∗E is called the pullback
of E by ϕ or the bundle induced by ϕ. The pair (ψ, ϕ) is a (case of a)
fiber bundle morphism - ψ is called a cover of ϕ - which are generally
defined by the equation (commutative diagramm) (40)

π ◦ ψ = ϕ ◦ π∗ (41)
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If (U, η) is a local trivialization of E then (ϕ−1(U), η∗) is a local trivialization
of ϕ∗E where η∗(x, e) = (x, proj2(η(e))).

Given a section σ ∈ Γ(Y,E) then

ϕ∗σ := σ ◦ ϕ ∈ Γ(X,ϕ∗E) (42)

is called pullback section of σ by ϕ.

Topological spaces in differential geometry are usually smooth manifolds. In
this case one requires ϕ and the vector bundles also to be smooth.

4.3.1 Smooth Manifolds and Scalar Functions

Let ϕ : M → N be a smooth function between smooth manifolds and ν :
N → R a smooth function on N . Then the pullback ϕ∗ν of ν by ϕ is defined
by

(ϕ∗ν)(x) = ν(ϕ(x)) (43)

The set C∞(M) of smooth scalar functions ψ : M → R can be naturally
identified with the vector space of smooth sections Γ∞(M,M × R) on the
vector bundle

∐
x∈M R ∼= M×R. Thus the pullback of the smooth scalar

function ψ
(ϕ∗ψ)(x) = ψ(ϕ(x)) (44)

is the pullback of a smooth section on the smooth vector bundle M × R.

4.3.2 Multilinear forms

Let ϕ : V → W be a linear map and F a multilinear form F : W× . . .×W →
R. Then the pullback ϕ∗F of F by ϕ is defined by

(ϕ∗F )(v1, . . . , vn) = F (ϕ(v1), . . . , ϕ(vn)) (45)

4.3.3 Cotangents and 1-Forms

To imagine the following example, it is helpful to think of M = Rm , N = Rn

and Jx(f) as the Jacobi-matrix of f at a point x ∈M .
Let Let f : M → N be a smooth function between smooth manifolds. Then
the differential Jx(f) = f∗ = df = Df of f is a function that transforms
tangent vectors of M to the tangent vectors of N . It can be viewed as a
bundle morphism over M of the tangent bundle TM of M to the pullback
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bundle f ∗TN : for a tangent vector vx of M it is Jx(f)(vx) = wf(x) a tangent
vector of N , that still remembers x.

TM
Jx(f)=f∗−→ f ∗TN

πM ↓ ↓ π′
M

=−→ M

(46)

Now the transpose of f∗ = Jx(f) = Df maps the corresponding dual spaces,
which are the cotangent bundles in the opposite direction:

Jx(f)τ = f τ∗ : f ∗T ∗N −→ T ∗M (47)

The sections σ ∈ Γ(N, T ∗N) are the 1−forms or Pfaffian forms on N .
Then (f ∗σ) = σ ◦ f ∈ Γ(M, f ∗T ∗N) is the pullback section by f (cp. (42)).
A 1−form on M is then achieved with the help of the above bundle morphism
(47) at each point x ∈M defined by

(f ∗σ)x(vx) := σf(x)(Jx(f)(vx)) = σf(x)(f∗(vx)) = σf(x)(Dxf(vx)) (48)

for vx ∈ TxM . Tangent vectors as part of a vector field are usually written
X instead of vx. However, one has to be careful not to confuse single tangent
vectors with the entire vector field, which often is also written as X. In the
latter case, one denotes the points by p ∈ M instead of x ∈ M and the
tangent vectors as Xp.

4.3.4 Differential forms

Let f : M → N be a smooth function between smooth manifolds and σ ∈
Γ(N,∧k(T ∗N)) a k−form on N , i.e. a section of N to the k−fold outer
bundle of its cotangent bundle. As in the case of 1−forms (eq. (48)) we
define for tangent vectors X1, . . . , Xk ∈ TpM at a point p ∈ M a k−fold
pullback differential form on M by

(f ∗σ)p(X1, . . . , Xk) = σf(p)(f∗(X1 ∧ . . . ∧Xk) = σf(p)(dpf(X1), . . . , dpf(Xk))
(49)

The pullback f ∗ of a differential form has two important compatibility prop-
erties

f ∗(ω1 ∧ ω2) = f ∗(ω1) ∧ f ∗(ω2) (50)

f ∗(dω) = df ∗(ω) (51)

which makes them an important tool in differential geometry.
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4.3.5 Covariant Tensor Fields

Let f : M → N be a smooth function between smooth manifolds and F a
covariant tensor field of rank (0, k) on N , which is a section of the tensor
bundle on N whose fiber at y ∈ N is the vector space of multinlinear
k−forms

F : Ty(N)× . . .× TyN −→ K (52)

Now the pullback of F by f is the (0, k)−tensor field f ∗F on M defined by
(p ∈M , Xi ∈ TpM)

(f ∗F)p(X1, . . . , Xk) = Ff(p)(f∗(X1⊗. . .⊗Xk) = Ff(p)(dpf(X1), . . . , dpf(Xk))
(53)

4.3.6 Diffeomorphisms

Let f : M → N be a diffeomorphism between smooth manifolds, i.e. f has
an inverse function f−1. Then the linear map

Jp(f) = f∗ = dpf ∈ GL(TpM,Tf(p)N) (54)

can be inverted by

J−1
p (f) = f−1

∗ = (dpf)−1 ∈ GL(Tf(p)N, TpM)) (55)

4.3.7 Connections - Covariant Derivatives

Let f : M → N be a smooth function between smooth manifolds and ∇ a
connection on a vector bundle E over N , then there is a pullback con-
nection f ∗∇ on f ∗E over M defined by

(f ∗∇)X(f ∗σ) = f ∗(∇df(X)σ) (56)

I will return to them in section 6.2.

4.3.8 Dual Operators

Let (E,M, πM) and (F,N, πN) be two vector bundles and ϕ : M → N a
continuous function with pullback ϕ∗ : F → E. Then the dual operator
ϕ∗ : E → F is the pushforward of ϕ. An example is the tangent bundle
morphism.
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4.4 Pushforwards

4.4.1 Tangent Bundles

Let ϕ : M → N be a smooth map on smooth manifolds. Then the differential
ϕ∗ = Dϕ defines a pushforward (and a cover) of ϕ of the corresponding
tangent bundles:

TM
ϕ∗=Dϕ−→ TN

πM ↓ ↓ πN
M

ϕ−→ N

(57)

The tangent vectors can be seen as directional derivatives. The maps are
given by ϕ∗ : TM → TN

ϕ∗ : TpM → Tϕ(p)N (58)

(ϕ∗(v))(f) = v(f ◦ ϕ) (59)

with p ∈ M, v ∈ TpM, f ∈ C∞(N). Unfortunately there isn’t a general
convention of how to write this pushforward. It depends on the context
(bundles, category theory, tangent bundels, tangent spaces, differential ge-
ometry, physics etc.) and emphasis (linearity, locality, functions and curves).
It varies from author to author. Other notations which are frequently used
(for what I started with Jp(ϕ)v ):

ϕ∗(p, v) = ϕ′p(v) = ϕ′(p)v = Dϕp(v) = Dpϕ(v) = dϕp(v) = dpϕ(v) = Tpϕ(v)
(60)

Let γ(t) : I → M be a (smooth) curve through p on the manifold M and
v = γ̇(t0) its tangent vector at p = γ(t0). Then γ(t) = (ϕ ◦ γ)(t) defines a
corresponding curve on the codomain manifold N through ϕ(p) and we have

ϕ∗(v) = dϕp(v) = γ̇(t0) =
d

dt

∣∣∣∣
t=t0

(ϕ ◦ γ)(t) (61)

or in case the tangent vectors are defined by derivations (cp. 6.4)

ϕ∗(X)(f) = dϕp(X)(f) = X(f ◦ ϕ) (62)

For a representation in coordinates (by charts, cp. 3.1) let us consider lo-
cal coordinates (x1, . . . , xm) on M in an open chart U around p ∈ M and
(y1, . . . , yn) on N in an open chart V around ϕ(p) ∈ N . For the vectors
v ∈ TpM and w = ϕ∗(v) ∈ Tϕ(p)N we thus get

v =
m∑
i=1

vi
∂

∂xi
, w =

n∑
j=1

wj
∂

∂yj
(63)
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wj =
m∑
i=1

∂ϕ̂j
∂xi

vi , ϕ = (ϕ̂1, . . . , ϕ̂n) w.r.t. charts (64)

dϕp

(
∂

∂xi

)
=
∂ϕ̂j

∂xi
∂

∂yj
(65)

4.4.2 Vector Fields

Let ϕ : M → N be a smooth map on smooth manifolds and σ ∈ Γ(M,TM)
a section of the vector bundle (E,M, πM , TM) which is a vector field X = σ
on M . Then the pullback along ϕ is a vector field on M , i.e. a section in
Γ(M,ϕ∗TN) with (ϕ∗(Y ))p = (Y ◦ϕ)p (cp. (42)). If we apply the differential
Dp(ϕ)(X) = ϕ∗(p,X) pointwise (cp. (58) to (60)) we get the pushforward
along ϕ by ϕ∗(p,X) = (Dpϕ)X, i.e. ϕ∗(X) ∈ Γ(M,ϕ∗TN).

Any vector field Y ∈ Γ(N, TN) defines a pullback section ϕ∗Y ∈ Γ(M,ϕ∗TN)
with (ϕ∗Y )p = (Y ◦ϕ)(p) = Yϕ(p). A vector field X ∈ Γ(M,TM) and a vector
field Y ∈ Γ(N, TN) are ϕ−related, if

dϕ(X) = Dϕ(X) = ϕ∗(X) = ϕ∗(Y ) = Y ◦ ϕ (66)

that is for all points p ∈ M holds Dp(ϕ)(X) = Yϕ(p). In case ϕ is a diffeo-
morphism, we even get

Yq = ϕ∗(Xϕ−1(q)) (67)

Assume X, Y are vector fields such that ϕ∗(X) = dϕ(X) and ϕ∗(Y ) = dϕ(Y )
are ϕ−related, f : N → R and q = ϕ(p) ∈ N . By multiple application of
(59) we get

ϕ∗([X, Y ])(f(q)) = ϕ∗(X ◦ Y − Y ◦X)f(q)

= (X ◦ Y − Y ◦X)(f ◦ ϕ(p))

= X(Y (f ◦ ϕ)(p))− Y (X(f ◦ ϕ)(p))

= X(ϕ∗(Y )(f(ϕ(p))))− Y (ϕ∗(X)(f(ϕ(p))))

= ϕ∗(X)(ϕ∗(Y )(f(q)))− ϕ∗(Y )(ϕ∗(X)(f(q)))

= [ϕ∗(X), ϕ∗(Y )](f(q))

(68)

and the commutator (Lie bracket) of ϕ−related vector fields is again a
ϕ−related vector field.

For two smooth functions ϕ : M → N , ψ : N → P the chain rule holds for
the pushforwards of ψ ◦ ϕ : M → P

(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗ (69)
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5 Lie Derivatives

A Lie derivative is in general the differentiation of a tensor field along a vector
field. This allows several applications, since a tensor field includes a variety of
instances, e.g. vectors, functions or differential forms. In case of vector fields
we additionally get a Lie algebra structure. This is, although formulated in a
modern language, the actual reason why Lie algebras have been considered in
the first place: as the tangent bundle of Lie groups which are themselves the
invariants which appear as symmetry groups in the standard model of particle
physics or more generally in the famous theorem of Emmy Noether, which
is actually a theorem about invariants of differential equations (see [9],[10]).
The Jacobi identity, e.g., which together with anti-commutativity defines a
Lie algebra is simply a manifestation of the Leibniz rule of differentiation.

5.1 Definitions

”Let X be a vector field on a manifold M . We are often interested in how
certain geometric objects on M , such as functions, differential forms and
other vector fields, vary under the flow exp(εX) induced by X. The Lie
derivative of such an object will in effect tell us its infinitesimal change when
acted on by the flow. ... More generally, let σ be a differential form or vector
field defined over M . Given a point p ∈ M , after ’time’ ε it has moved to
exp(εX) with its original value at p. However, σ|exp(εX)p and σ|p, as they
stand are, strictly speaking, incomparable as they belong to different vector
spaces, e.g. TM |exp(εX)p and TM |p in the case of a vector field. To effect
any comparison, we need to ’transport’ σ|exp(εX)p back to p in some natural
way, and then make our comparison. For vector fields, this natural transport
is the inverse differential

Φ∗ε ≡ d exp(−εX) : TM |exp(εX)p → TM |p (70)

whereas for differential forms we use the pullback map

Φ∗ε ≡ exp(εX)∗ : ∧k T ∗M |exp(εX)p → ∧
k T ∗M |p (71)

This allows us to make the general definition of a Lie derivative.” [5]

The exponential function comes into play here, because [5] is about the the-
ory of Lie Groups G, and the exponential map is the natural function that
transports objects in the tangent bundle of a Lie group G to those on the
manifold G, a form of integration if you like. It is the same reason as we often
use an Ansatz with the exponential function to solve differential equations,
that are also statements on tangent bundles.
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Definition [5]: The Lie derivative along a vector field X of a vector field
or differential form ω at a point p ∈M is given by

LX(ω)p = X(ω)|p = lim
t→0

1

t

(
Φ∗t (ω|exp(tX)p

)− ω|p
)

=
d

dt

∣∣∣∣
t=0

Φ∗t (ω|exp(tX)p
)

(72)

In this form it is obvious that the Lie derivative is a directional derivative
and another form of the equation (1) which is the leitmotif of all the concepts
presented here and which is the crucial part of all differentiation processes:
the infinitesimal change in an object’s behavior along a certain direction (or
all). The equivalence of this definition to those given below must be shown
and can be found, e.g. in [5].

Lie Derivative of a Function. Let f : M → R be a smooth map on a
smooth manifolds M . The Lie derivative of f along the smooth vector field
X is the directional derivative at a point p ∈M :

LXf(p) = X(p)(f) = dpf(X(p)) (73)

In local coordinates (x1, . . . , xn) : U ⊆M → Rn with X =
∑n

i=1 Xi
∂
∂xi

it’s

LXf(p) =
n∑
i=1

Xi(p)
∂f

∂xi
(p) (74)

Lie Derivative of a Vector Field. Let X, Y be two vector fields on a
smooth manifold M and X(γ(t)) a flow of X (see (28)). The Lie derivative
from Y along X is defined by

LXY =
d

dt

∣∣∣∣
t=0

(X∗(γ(t))Y ) (75)

Furthermore
LXY = [X, Y ] = X ◦ Y − Y ◦X (76)

Lie Derivative of a Tensor Field. Let T be a tensor field and X a vector
field with a local flow ξ(γ(t)). Then the Lie derivative of T along X is
given by

LXT =
d

dt

∣∣∣∣
t=0

(ξ∗(γ(t))T ) (77)

There is also an axiomatic and algebraic approach ([20], (73), (81), (82),(6.3))

(A1) LXf = X(f)

(A2) LX(S ⊗ T ) = LXS ⊗ T + S ⊗ LXT

(A3) LX(T (Y1, . . . , Tk)) = (LXT )(Y1, . . . , Yk) +
∑

T (Y1, . . . , (LXYi), . . . , Yk)

(A4) LX ◦ d = d ◦ LX
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Lie Derivative of a Differential Form. To define a directional derivative
of differential forms more detailed than in (71) we have to take the arguments
into consideration. Let M be a manifold, X a vector field on M and ω ∈
∧k(M) a k−form, i.e. for all p ∈ M we have an alternating k−linear map
ω(p) : (TpM)k → R. We first define an interior product of X and ω as the
(k − 1)−form ιXω given by

(ιXω)(X1, . . . , Xk−1) = ω(X,X1, . . . , Xk−1) (78)

which is also called the contraction of ω with X. The multilinear map
ιX : ∧k(M)→ ∧k−1(M) has the property that for two differential forms ω, σ

ιX(ω ∧ σ) = (ιXω) ∧ σ + (−1)k−1ω ∧ (iXσ) (79)

which is the graded form of the Leibniz rule on Graßmann algebras, i.e. the
version that takes alternating into account. For a differentiable function on
M we get

ιfXω = fιXω and LXf = ιXdf (80)

For a general differential form ω we define the Lie derivative as

LXω = (ιX ◦ d+ d ◦ ιX)ω (81)

Two important properties of the Lie derivative are

dLXω = LXdω (82)

LfXω = fLXω + df ∧ ιXω (83)

5.2 Left-Invariant Vector Fields and GLn

Let us now consider an analytic group G, a Lie group, i.e. an analytic
topological manifold G endowed with analytic multiplication and inversion.
This group acts differentiable on itself via left multiplication Lg : G→ G by
Lg(h) = gh , (g, h ∈ G).

Definition: A vector field X on G is called left-invariant if for all g, h ∈ G

dLg(Xh) = XLg(h) = Xgh (84)

The vector space of all left-invariant vector fields of G is called the Lie
algebra g of G. Since

Xg = dLg(Xe) (85)
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each vector field is already determined by its value at the identity element
e ∈ G. If we conversely have a vector field at e that satisfies (85) we get by
the chain rule

dLg(Xh) = dLg(dLh(Xe)) = d(Lg ◦ Lh)(Xe) = dLgh(Xe) = Xgh (86)

the left-invariance of X. Thus g ∼= TeG and dim g = dimG. By (68) we have
dLg[X, Y ] = [dLgX, dLgY ] = [X, Y ] for left-invariant vector fields.

Definition: A Lie algebra g on G is a vector space with a bilinear multi-
plication

[., .] : g× g→ g (87)

that is anti-commutative (cp. (6.3))

[X,X] = 0 (88)

and satisfy the Jacobi-Identity (cp. (A2), Leibniz rule and (81) in section
5.1)

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (89)

Example. Let us consider the general linear group G = GL(n,R) of
all regular real (n, n)−matrices and A = (aij) be such a matrix. Then the
tangent space at the identity element e = I ∈ G is given by

VA|I =
∑
i,j

aij
∂

∂xij

∣∣∣∣
I

(90)

Here we denote the tangent bundle by V to avoid confusion with group
elements X = (xij), Y = (yij). The matrix entries of LY (X) = Y X are

n∑
k=1

yikxkj = Y i
kX

k
j (91)
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and with (85)

VA|Y = dLY (VA|I)

= dLY
∑
i,j

aij
∂

∂xij

=
∑
l,m

∑
i,j

aij (
∑
k

∂

∂xij
ylkxkm)

∂

∂xlm

=
∑
l,m

∑
i,j

aij δmj yli
∂

∂xlm

=
∑
l,m

∑
i

yliaim
∂

∂xlm

(92)

It can now be shown by direct matrix multiplications, that

[VA, VB] = VA ◦ VB − VB ◦ VA = V[AB−BA] = V[A,B] (93)

This means that

gl(n,R) = g = TeG = TeGL(n,R) = {M(n,R) | [A,B] = AB −BA } (94)

Traditionally the basis point e ∈ G of the tangent bundle TeG is denoted by
the neutral group element, even in the case of matrix (Lie) groups G, where
e = I the identity map. So as a basis point it’s e and in coordinates it’s I.
For the same reason (tradition) are Lie algebras denoted by letters in fraktur
types.

Let us assume G = SL(n,R) the special linear group of all regular real
(n, n)−matrices with determinant 1. If we evaluate the differential of the
determinant at e = I we get

de detX =
∑
π

sgn(π)de(
∏
k

xkπ(k))

=
∑
π

sgn(π)
∑
i,j

∂

∂xij

∣∣∣∣
I

(
∏
k

xkπ(k))

=
∑
k

∂

∂xkk

∣∣∣∣
I

(95)

because evaluation at e = I = (δij) leaves only the diagonal (x11, . . . , xnn)
different from 0 which evaluates to 1 after applying the product rule. In the
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general case we calculate the push forward det∗ of det : SL(n,R)→ R. Sine
it is a constant function, we get by the previous result

0 = det∗(VA|I)(X)

= de det(VA)(X)

=
∑
k

akk
∂

∂xkk

∣∣∣∣
I

(X)

= trA

(96)

This means

sl(n,R) = g = TeG = TeSL(n,R) = { gl(n,R) | trA = 0 } (97)

Unitary matrices (U † = U−1) have a Lie algebra determined by

U † = deU
† = deU

−1 = −U

i.e. skew-Hermitian matrices, so

su(n,C) = g = TeG = TeSU(n,C) = { sl(n,R) |U = −U † } (98)

6 Derivatives in Other Contexts

6.1 Material Derivative

The material derivative is a special case of a derivative in order to describe
the flow of fluids or gases. It is more of a special tool for these currents rather
than a special concept of a differentiation process. The material derivative
of a scalar or vectorial field Φ(x, t) is defined by

DvΦ =
dv
dt

Φ =
∂Φ

∂t
+(v ·∇)(Φ) =

(
∂

∂t
+ vx

∂

∂x
+ vx

∂

∂x
+ vx

∂

∂x

)
(Φ) (99)

where v represents the velocity of the flow at point x and time t. The first
summand is the local behavior in time at a fixed point, the second is the
convective change of a particle in the flow. Wikipedia [20] names various
other names for the material derivative:

• Euler operator

• advective derivative
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• convective derivative

• derivative following the motion

• hydrodynamic derivative

• Lagrangian derivative

• substantial derivative

• substantive derivative

• Stokes derivative

• total derivative

Assume a temperature field Φ(x, y, t) on the two dimensional surface of a
lake, that gets warmer in a certain direction (SW to NE), e.g. by warming
inflows, and which is additionally warming up by sunshine (form ([19])).

Φ(x, y, t) = 300K + (1K/m)x + (2K/m) y + (3K/s) t

If we assume a current v = (3, 1) m/s, then

DvΦ =
dvΦ

dt
= (

∂

∂t
+ v · ∇)(Φ) = 3 K/s +

[
3
1

]
m/s ·

[
1
2

]
K/m = 8K/m

An observer in a boat, floating with the current experiences an additional
convective decrease in temperature by 5K/s.

Important versions of this derivative are (among many more):

Navier-Stokes equations. Compressible fluids.

ρ · ~v = ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p+ µ∆v + (λ+ µ)∇(∇ · ~v) + ~f (100)

Navier-Stokes equations. Incompressible fluids.

ρ · ~v = ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p+ µ∆v + ~f (101)

Euler Equation (Current in Frictionless Elastic Fluids).

∂~v

∂t
+ (~v · ∇)~v +

1

ρ
grad(~p) = ~k (102)

Cauchy-Euler Law of Movement.

ρ~a = ρ~k + divσ (103)
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6.2 Connection - Covariant Derivative

In this section I will essentially restrict myself to real affine connections, as
the subjects as a whole would lead too far. The basic idea is to get a hold
on curvatures of differentiable manifolds. In an ordinary Euclidean space
one would simply calculate the second derivative. On manifolds, however,
the second derivative would mean a limit of a difference quotient of tangent
vectors γ′(t1) and γ′(t2) of a curve γ(t) which at different points belong to
different tangent fibers. So to succeed, one has to connect the fibers somehow.
This leads to the concept (and name) of connections and parallel transport of
tangent vectors. Formally we consider a smooth real manifold M , its tangent
bundle TM and a vector bundle (E,M, π) on M and sections of TM and E
(see 4.2) for we want to define a directional derivative of a vector field along
a tangent vector.

Definition: A connection on the bundle (E,M, π) is a function

∇ : Γ(TM)× Γ(E) −→ Γ(E)

(X, σ) 7−→ ∇X(σ)
(104)

such that the following conditions hold with
X, Y ∈ Γ(TM) , f, g ∈ C∞(M) , µ, ν ∈ R , σ, τ ∈ Γ(E)

C∞(M)−linearity in the first argument.

∇fX+gY (σ) = f · ∇X(σ) + g · ∇Y (σ) (105)

R−linearity in the second argument.

∇X(µσ + ντ) = µ∇X(σ) + ν∇X(τ) (106)

Leibniz rule.
∇X(fσ) = DXf · σ + f · ∇Xσ (107)

The connection ∇ is called a linear connection or affine connection, if
(E,M, π) = TM . A positive definite and symmetric bilinear form g on TM
is called a Riemann metric or a metric tensor, if

g : TM × TM −→ R (108)

depends smoothly on p ∈ M , i.e. p 7→ gp(Xp, Yp) is a smooth function. A
Riemannian connection is an affine connection which additionally satis-
fies the following conditions:

Lie multiplication.

∇XY −∇YX = [X, Y ] (109)
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Metric compatibility.

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ) (110)

If (M, g) is a Riemannian manifold, then there is exactly one affine connec-
tion on M , which is a Riemannian connection. Are M a three dimensional
orientable Riemannian manifold and X, Y, Z vector fields, then

∇Z(X × Y ) = (∇ZX)× Y +X × (∇ZY ) (111)

for the corresponding Riemannian connection, i.e. the product rule holds for
cross products. Furthermore there is a unique R-linear mapping

d∇ : ∧n(M,TM) −→ ∧n+1(M,TM) , n ∈ N (112)

with the properties
d∇X(Y ) = DY (X) (113)

and d∇ is a derivation on ∧(M,TM)

d∇(ω1 ∧ ω2) = d∇ω1 ∧ ω2 + (−1)nω1 ∧ d∇ω2 (114)

d∇ is called the corresponding exterior derivative. [4]

6.3 Exterior Derivative or Cartan Derivative

We’ve already met exterior derivatives (5.1 (79) and 6.2 (114)). I person-
ally like the term boundary operator for it - coboundary operator to be
exact - because it emphasizes the topological nature of exterior derivatives
as the homomorphism in cochain complexes. It represents the approach
to calculate topological objects by algebraic means and results in, e.g. the
de Rahm cohomology. Exterior derivatives can also be seen geometrically
by their close relationship to Lie multiplication (113) and the Riemannian
metric.

Definition: Let U ⊆ M be a open set in an n−dimensional smooth man-
ifold and ∧(M) = ∧(M,TM) the algebra of differential forms on M . The
(existing and unique) function d : ∧k(U) −→ ∧k+1(U) , n ∈ N0 , is called
exterior derivative or Cartan derivative if it has the following properties

d(ω1∧ω2) = dω1∧ω2 +(−1)kω1∧dω2 for all ω1 ∈ ∧k(U) , ω2 ∈ ∧l(U) (115)

df = Df the total differential of f ∈ C∞(U) (116)

d2 = 0 (117)
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d(ω|U) = (dω)|U for all ω ∈ ∧k(V ) and U ⊆ V ⊆M open (118)

The exterior derivative can be expressed by the explicit formula

dω(X0, . . . , Xk) =
k∑
i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xk)) +∑
i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk)

(119)

For the pullback of a smooth function f : M → N we remind on the impor-
tant equations (sec. 4.3.4, eq. (50),(51))

f ∗ : Γ(N, T ∗N) = ∧N −→ ∧M = Γ(M,T ∗M) (120)

f ∗(ω1 ∧ ω2) = f ∗(ω1) ∧ f ∗(ω2) (121)

f ∗(dω) = df ∗(ω) (122)

For the corresponding dual operator, the boundary operator on the corre-
sponding chain complex or coderivative δ : ∧kM → ∧k−1M on a Rieman-
nian manifold (M, g) we have for ω1, ω2 ∈ ∧(M) the adjoint equations

δ2 = 0 (123)

g(dω1, ω2) = g(ω1, δω2)) (124)

δ is sometimes also denoted by d∗ to stress the duality to d. The opera-
tor dδ + δd is called Laplace-Beltrami differential operator [4],[20] or
Hodge-Laplace-Operator [19].

There are many formulas which connects these two operators to other differ-
ential operators and Riemannian metric. And it is not by accident that the
equation (122) already looks like Stokes’ theorem. For an example on how
to actually calculate with exterior products and derivations, see [17].

6.4 Derivations

Derivations are essentially linear functions, which obey the Leibniz rule. This
already shows, we need an algebra A to define them and anyone will do.

Definition: A derivation on an algebra A over a field F is a F−linear map
d that satisfies for all a, b ∈ A

d(a ◦ b) = d(a) ◦ b+ a ◦ d(b) (125)
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If M is a smooth manifold, then the (tangent) vector field on M are the
R−derivations of C∞(M). [4].

We often deal with Lie algebras in our context, so a derivation of a Lie algebra
g becomes

d([X, Y ]) = [dX, Y ] + [X, dY ] (126)

For the derivations adZ : g → g defined by the left multiplication in g, i.e.
adZ(X) := [Z,X] equation (126) becomes the Jacobi identity

[Z, [X, Y ]] = adZ([X, Y ])

= [adZ(X), Y ] + [X, adZ(Y )]

= [[Z,X], Y ] + [X, [Z, Y ]]

(127)

Derivations play a central role in the cohomology theory of Lie algebras (cp.
(119)). adZ are called the inner derivations of g which build an ideal
in the algebra Der(g) of all derivations of g in the Lie algebra gl(g) of the
general linear group of g as

[d, adZ](X) = d[Z,X]− [Z, dX] = [dZ,X] = ad(dZ(X)) (128)

The mapping X 7→ adX (again by the Jacobi identity) is a Lie algebra
homomorphism

g −→ gl(g) (129)

and therefore defines a representation of g, so ad is called the adjoint rep-
resentation of g. This refers to the corresponding names given in the Lie
groups: ιz(x) = zxz−1 is called an inner automorphism of a group G. If
G is a Lie group this induces a natural automorphism of the Lie algebra g
of smooth (analytic) vector fields of G by Ad(y)(X) = yXy−1, the adjoint
representation of G. Both are related by the equation [7]

exp ◦ ad = Ad ◦ exp (130)

For commuting X, Y ∈ g we get

expX · expY = exp(X + Y ) (131)
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and for non commuting the Campbell-Baker-Hausdorff formula

expX · expY = exp(X + Y

+
1

2
[X, Y ]

+
1

12
([X, [X, Y ]] + [Y, [Y,X]])

− 1

24
[Y, [X, [X, Y ]]]

− 1

720
([Y, [Y, [Y, [Y,X]]]] + [X, [X, [X, [X, Y ]]]])

+
1

360
([X, [Y, [Y, [Y,X]]]] + [Y, [X, [X, [X, Y ]]]])

+
1

120
([Y, [X, [Y, [X, Y ]]]] + [X, [Y, [X, [Y,X]]]])

+ · · · )

(132)

In other cases, exterior derivatives (cp.(115)), differential forms (cp.(79)), we
have seen another form of derivations , derivations of graded algebras, e.g.
the Z2−graded Lie superalgebras.

Definition: A anti-derivation on a graded algebra A is a linear map

d(a ◦ b) = d(a) ◦ b+ (−1)|a|)a ◦ d(b) ( a, b ∈ A ) (133)

where |a| denotes the grade of a ∈ A.
The multiplication in a Lie superalgebra is given by the equations

Super skew-symmetry.

[X, Y ] = −(−1)|X||Y |[Y,X] (134)

Super Jacobi identity

(−1)|X||Z|[X, [Y, Z]] + (−1)|Y ||X|[Y, [Z,X]] + (−1)|Z||Y |[Z, [X, Y ]] = 0 (135)

7 Important Theorems - biased, of course

7.1 Implicit Function Theorem [1]

7.1.1 Jacobi Matrix (Chain Rule)

Let (x0, y0) ∈ U1 × U2 = {x ∈ Rk | ||x − x0|| < ε1} × {y ∈ Rm | ||y − y0|| <
ε2} and f : U1 × U2 → Rm a function with f(x0, y0) = 0 which is totally
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differentiable at (x0, y0) such that the (m×m)−matrix ∂f
∂y

(x0, y0) is invertible.

In addition let g : U1 → Rm be a continuous function with g(x0) = y0 and
g(U1) ⊆ U2 and f(x, g(x)) = 0 for all x ∈ U1

Then g is differentiable at x0 and for the Jacobi matrices

∂g

∂x
=

(
∂gi
∂xj

)
1≤i≤m
1≤j≤k

,
∂f

∂x
=

(
∂fi
∂xj

)
1≤i≤m
1≤j≤k

,
∂f

∂y
=

(
∂fi
∂yj

)
1≤i≤m
1≤j≤m

(136)

the following equation holds:

∂g

∂x
(x0) = −

[
∂f

∂y
(x0, y0)

]−1

·∂f
∂x

(x0, y0) or
∂f

∂x
(x0, y0) +

∂f

∂y
(x0, y0)·∂g

∂x
(x0) = 0

(137)

7.1.2 Implicit Function

Let f : U1 × U2 → Rm be continuous differentiable on open sets U1 ⊆
Rk , U2 ⊆ Rm, i.e. f ∈ C1(U1 × U2), and f(x0, y0) = 0 such that the (m ×
m)−matrix ∂f

∂y
(x0, y0) is invertible.

Then there are open neighborhoods Vi ⊆ Ui of (x0, y0) and a continuous
function g : V1 → V2, i.e. g ∈ C0(V1 × V2), such that f(x, g(x)) = 0 for all
x ∈ V1. For a point (x, y) ∈ V1×V2 with f(x, y) = 0, it follows that y = g(x).

7.2 Cauchy’s Integral Formula [2]

Let f : U → C be a holomorphic function on the open set U and A ⊆ U
compact with a smooth boundary and z0 a inner point of A. Then

f(z0) =
1

2πi

∫
∂A

f(z)

z − z0

dz (138)

7.3 Cauchy-Goursat Theorem [2],[22],[25]

7.3.1 Simply Connected Domain

Let U be a simply connected domain, e.g. a star domain, where each holo-
morphic function has an anti-derivative. Then∮

Γ

f(z) dz = 0 (139)

for all closed paths Γ : [0, 1]→ U .
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7.3.2 Homotopy Version

If U ⊆ C is an open set and γ ∼ η : [0, 1]→ U two homotopic paths, then∫
γ

f(z) dz =

∫
η

f(z) dz (140)

7.3.3 Homology Version

For a (open and connected) domain U ⊆ C and a closed path Γ in U∫
Γ

f(z) dz = 0 for holomorphic functions f ⇐⇒ Γ is homologous to zero in U

(141)

7.3.4 Isolated Singularities

For a (non-empty, open, connected) domain U ⊆ C, an inner point z0 ∈ U , a
holomorphic function f : U\{z0} → C and a closed path Γ which surrounds
positively oriented the isolated point {z0} indΓ(z0)−times in U ,

there is an open punctured disc Uε\{z0} ⊆ U , which is relatively compact in
U , and f |Uε is holomorphic, such that∮

Γ

f(z) dz = indΓ(z0) ·
∮
∂Uε

f(z) dz (142)

indΓ(z0) is called the winding number of Γ. With the definition of residues,
i.e.

resz0(f) :=
1

2πi

∮
∂Uε

f(z) dz (143)

this gets
1

2πi

∮
Γ

f(z) dz = indΓ(z0) · resz0(f) (144)

7.4 (Cauchy’s) Residue Theorem [2],[23],[24]

Let U ⊆ C be a non-empty, simply connected, open domain and Ud ⊆ U
a discrete set, i.e. a set of isolated points. For a holomorphic function
f : U\Ud → C and a closed path Γ : I → U\Ud, where I ⊆ R is a closed real
interval, then

1

2πi
·
∫

Γ

f(z) dz =
∑
z0∈Ud

indΓ(z0) · resz0(f) (145)
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7.5 Liouville’s Theorem [26],[27],[28]

Let f : C→ C a bounded entire function, i.e. f is holomorphic on the entire
complex plane and there is a constant C ∈ R such that ||f(z)|| < C for all
points z ∈ C, then f is constant.

7.6 Riemann’s Removable Singularity Theorem [29]

Let U be a non-empty, open, connected domain, z0 ∈ U and f : U\{z0} → C
a holomorphic function. If there is a punctured neighborhood U0 of {z0}, i.e.
z0 is a inner point of the closure of U0 but isn’t an element of U0, such that
||f(z)|| < C for a constant C ∈ R and all points z ∈ U0, then there is a holo-
morphic function f : U → C that extends f on the entire U , i.e. f |U\{z0} = f .

In this case z0 is called a removable singularity of f .
Singularities in general of a function f are points, at which f isn’t defined.

A singularity z0 is called a pole of f if it isn’t a removable singularity, but
there is a natural number k ∈ N such that (z − z0)k · f(z) is a removable
singularity at z0. The minimal number k is then called the order of the
pole z0.

Singularities which are neither removable nor poles are called essential sin-
gularities.

7.7 Little Picard’s Theorem [30]

The image img(f) = {f(z) | z ∈ C} of a non-constant entire function f is
the entire complex plane without at most one point, i.e. img(f) = C or
img(f) = C\{z0} with a single point z0 ∈ C.

7.8 Great Picard’s Theorem [31]

Let f be a holomorphic function with an essential singularity at a point z0,
then on any punctured neighborhood of z0, f(z) takes on all possible complex
values, with at most a single exception, infinitely often.
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7.9 Picard-Lindelöf Theorem [32]

7.9.1 Local Version

Let N be a Banach space and [a, b] × By0(r) ⊆ C ⊆ R × N on which a
function

f(x, y) : C −→ N (146)

is defined, that is continuous in the first real variable x and locally Lipschitz
continuous in the second. By0(r) ⊆ M is the closed ball with radius r and
center y0 ∈ N . Then there is exactly one solution to the initial value problem

y′ = f(x, y)

y(a) = y0

(147)

on the intervall [a, a+ η] with values in By0(r) where η = min{b− a, r
r0
} and

r0 = max{ ||f(x, y)|| | (x, y) ∈ [a, b]×By0(r)}.

7.9.2 Global Version

Let N be a Banach space and f : [a, b] × N −→ N a continuous function,
which is Lipschitz continuous in the second variable. Then for every y0 ∈ N
there is a unique global solution y : [a, b] → N (without any further local
solutions) to the initial value problem

y′ = f(x, y)

y(a) = y0

(148)

7.10 Stokes Theorem [2],[5]

Let M be a orientable, compact smooth manifold with a piecewise smooth
boundary ∂M and ω ∈ Γ(∧n−1M) a smooth alternating differential form
(exterior derivative, cp.(6.3)) of grade n− 1. Then∫

M

dω =

∫
∂M

ω (149)

7.11 Gauß Theorem - Divergence Theorem [2],[5]

Let V ⊆ Rn be a compact volume with a piecewise smooth boundary ∂V
and F a smooth vector field defined in an open neighborhood of V and N
its unit normal field, then∫∫∫

V

(∇ · F ) dV =

∫∫
∂V

(F ·N) d(∂V ) (150)
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7.12 Frobenius Theorem [5]

A subbundle F of a tangent bundle TM of a smooth manifold M is integrable
if and only if the vector fields with values in F build a Lie subalgebra of the
Lie algebra of TM .

7.13 Hairy Ball Theorem [4]

On a sphere Sn exists a continuous tangent vector field which is nowhere
zero, if and only if n is odd.

7.14 Noether’s Theorem [5],[9,[10]

I will quote the two versions in Olver’s book [5] without any explanations,
since these would lead too far. For those who are interested in the original
publications by Emmy Noether, I have linked the websites where they can
be found, see [9],[10].

7.14.1 Common Version

Suppose G is a (local) one-parameter group of symmetries of the variational
problem L[u] =

∫
L(x, u(n)) dx. Let

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

Φα(x, u)
∂

∂uα
(151)

be the infinitesimal generator of G, and

Qα(x, u) = Φα −
p∑
i=1

ξiuαi , uαi =
∂uα

∂xi
, (152)

the corresponding characteristic of v. Then Q = (Q1, . . . , Qq) is also a char-
acteristic of a conservation law for the Euler-Lagrange equations E(L) = 0;
in other words, there is a p−tuple P (x, un) = (P1, . . . , Pp) such that

DivP = Q · E(L) =

q∑
ν=1

QνEνL (153)

is a conservation law in characteristic form for the Euler-Lagrange equations
E(L) = 0.
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7.14.2 General Version

A generalized vector field v determines a variational symmetry group of th
functional L[u] =

∫
Ldx if and only if its characteristic Q ∈ Aq is the

characteristic of a conservation law DivP = 0 for the corresponding Euler-
Lagrange equations E(L) = 0. In particular, if L is a nondegenerate vari-
ational problem, there is a one-to-one correspondence between equivalence
classes of nontrivial conservation laws of the Euler-Lagrange equations and
equivalence classes of variational symmetries of the functional.

8 Epilog

In retrospect I might have chosen Stokes’ theorem as central concept or sim-
ply Leibniz’ product rule, as they somehow connect everything in this essay
and can be compared with Paris in the French railway metric. Unfortunately
one has to have already all concepts and definitions at hand for such an un-
dertaking. This has been the reason to write this essay: to provide a place
where the world of derivatives come together at one place, a quick reference
guide, if you like. As I began to write it, I didn’t imagine it would take so
many pages, although there could be and have been written entire textbooks
on each of the sections or even subsections above. For detailed studies I have
to refer to them as I for sure have missed some aspects others might consider
essential.

In the end, the question of how all these abstract analytic, algebraic and
topological concepts relate to actual calculations and physics is not a matter
of tools or obviousness, it is a matter of abstraction and the decision of how
far one wants to go on the venture to explore the beauty of nature.
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