I have this statement:
Find the most general form of the fourth rank isotropic tensor. In order to do so:
- Perform rotations in ## \pi ## around any of the axes. Note that to maintain isotropy conditions some elements must necessarily be null.
- Using rotations in ## \pi / 2 ## analyze the...
The issue here is that I don't know how to operate the final equations in order to get the phase diagram. I suppose some things are held constant so I can get a known curve such as an ellipse.
I attach the solved part, I don't know how to go on.
I copy again the statement here:
So, I think I solved parts a to c but I don't get part d. I couldn't even start it because I don't understand how to set the problem.
I think it refers to some kind of motion like this one in the picture, so I'll have a maximum and a minimum r, and I can get...
This is the problem's picture:
My problem is that what I got for one acceleration (m3's) via Newton's equations is not the same as via D'Alembert's principle (I've checked on my PC if they are the same expression).
I can't find the mistake. Any suggestion is welcome.
I attach pictures of what...