My question is that in both cases the expression is presented as "the potential difference between points a and b". However if I use both definitions will I obtain the same result or will I obtain symmetric results? I'm thinking the later is probably the correct one but now that leaves me with...
So I'm studying electrostatics and I came across to two different definitions of potential difference/voltage (because we're in stationary regimes) and I'm having trouble understanding how the expressions are equivalent.
They are for a voltage between point A and point B
$$U=V_a - V_b...
I was reading some stuff about dimensionally impossible equations. It was said that the equation
v = e^bt (b is a constant so that bt is dimensionless)
was dimensionally impossible. I understand that BUT I don't understand what they said next about the dimension of the right-side. They said...
I'm calculating a problem with motion equations. I need to use a motion equation for a sound wave (this is a simple problem of kinematics (fall of a rock) and I don't have any background about waves or harmonic motion)... So then I started to think... For intuition I know that sound doesn't have...