What I do is convert everything to moles (mmoles) in order to figure it out.
19.62 mL * 0.341 M NaOH = 6.69 mmoles OH-
To completely neutralize that, you need an equivalent in H+, so you need 6.69 mmoles H+. However, H2C2O4 produces 2 H+ per dissociation, so you would need half that amount, or...
Homework Statement
A 0.0450 M solution of para-aminobenzoic acid had an absorbance of 0.844 at 267 nm in a 1.00 cm cuvet, and an absorbance of 0.034 at 240 nm. A 0.0366 M solution of nicotinic acid had absorbances of 0.010 and 0.755 at 267 and 240 nm, respectively. A MIXTURE of PABA and...
Homework Statement
The magnetic field is uniform and out of the page inside a circle of radius R, and is essentially zero outside the circular region (see the figure). The magnitude of the magnetic field is changing with time; as a function of time the magnitude of the magnetic field is...
Homework Statement
A neutral metal rod of length 0.35 m slides horizontally at a constant speed of 9 m/s on frictionless insulating rails through a region of uniform magnetic field of magnitude 0.6 tesla, directed into the page as shown in the diagram. Before answering the following...
Homework Statement
Write the loop rule for each of the following circuits:
Homework Equations
Depending on the loop:
-emf + IR1 + IR2 + .... + IRn = 0
V = IR
If in series: R1 + R2 + ... Rn = R
If in parallel: 1/R1 + 1/R2 + ... 1/Rn = 1/R
The Attempt at a Solution
I really...
I solved it all on my own. I'll post the solution here so people will know how to do it if they come across it.
i = naME
i = electron current
n = electron density
a = area
M = electron mobility
E = electric field
For the thin and thick wire, the electron current for both of them is...
Homework Statement
The circuit shown above consists of a single battery, whose emf is 1.4 V, and three wires made of the same material, but having different cross-sectional areas. Each thick wire has cross-sectional area 1.4e-6 m2, and is 21 cm long. The thin wire has cross-sectional area...
Homework Statement
If the total charge on a rod of length 0.4 m is 2.6 nC, what is the magnitude of the electric field at a location 1 cm from the midpoint of the rod?
Homework Equations
[(2QK)/(Y)](1/sqrt(L^2 + 4[(Y)^2]), K = 8.99E9
I don't know if the above equation is actually correct...
Thanks for that. It says that sparks occur when the electric field strength is 3x10^6 N/C.
So if you have that, then:
E = E1 + E2
E = [Q/(A/2e)] + [Q/(A/2e)] (R>>Z)
3x10^6 = 2[Q/(A/2e)]
3x10^6 = 2[Q/(pi(2.4)^2/2(8.58E-12)]
Q = 3E20 N/C.
What am I doing wrong here?
Homework Statement
A capacitor consists of two large metal disks of radius 2.4 meters placed parallel to each other, a distance of 0.7 millimeters apart. The capacitor is charged up to have an increasing amount of charge +Q on one disk and -Q on the other. At about what value of Q does a spark...
Homework Statement
The source charge (the magenta circle at the origin) is a positive charge. A particle whose charge is -6e-09 C is placed at location D.
1. The electric field at location D has the value < -8000, 8000, 0 > N/C. What is the unit vector in the direction of E at this...
Oh, whoops. You're right.
With the Y component for the x-axis, it would be E(y) = kqs/y^3 = (8.99E9 * 6E-9 * 0.001) / (0.06^3) = 250.
250 + 500 = 750; <0,750,0>
Thanks.
Homework Statement
Two dipoles are oriented as shown in the diagram below. Each dipole consists of two charges +q and -q, held apart by a rod of length s, and the center of each dipole is a distance d from location A. If q = 6 nC, s = 1 mm, and d = 6 cm, what is the electric field at location...
Ohhhh. Pfft. When you said "heavier block falls 75.0 cm in 5.00 sec," it immediately smacked into me. Haha. I'm such an idiot for not noticing. Anyways, I got the answer. Thank you very much!
Still having trouble finding the acceleration of the blocks.
I found the angular acceleration of the pulleys by using the constant acceleration equation like you said. I got 1.22 rad/s^2, which is close enough. I can't figure out how to find the acceleration of the blocks since I used...
Homework Statement
A block has a mass of 500 g, another block has a mass of 460 g. Both are attached to a pulley with a frictionless wire that does not slip. The pulley, which is mounted in horizontal frictionless bearings, has a radius of 5.00 cm. When released from rest, the heavier block...
I did a problem similar to this one from a different text book with the values (everything is worded the same, except these values are in place):
m1: 2.00 kg
m2: 5.00 kg
v1: 10.0 m/s
v2: 3.00 m/s
K=1120 N/m
I approached this problem differenty when I drew the before and after reference...
Homework Statement
A block of mass m1=1.88 kg slides along a frictionless table with a speed of 10.3 m/s. Directly in front of it, and moving in the same direction, is a block m2=4.92 kg moving at 3.27 m/s. A massless spring with a force constant k=1120N/m is attached to the backside of m2...
Homework Statement
A 2.14 kg block is dropped from a height of 43.6 cm onto a spring of force constant 18.6 N/cm. Find the maximum distance the spring will be compressed.
I know that the mass is 2.14 kg, the force constant of the spring is K=1860 N/m.
I assume the final velocity, the...
1. The coefficient of static friction between the tires of a car and a dry road is .62. The mass of the car is 1500 kg. What is the maximum braking force is obtainable:
a. horizontal to the road.
b. on an 8.6 degree downgrade?
2. F=mA f(s)=M(s)N N=mg F=f(s)-mgsin(x)
3.
a...