# Search results

1. ### I How to determine matching coefficient in Effective Field Theory?

Assume that I have the Lagrangian $$\mathcal{L}_{UV} =\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m_{L}^{2} \phi^{2}+\left(\partial_{\mu} H\right)^{2}-M^{2} H^{2}\right] -\frac{\lambda_{0}}{4 !} \phi^{4}-\frac{\lambda_{2}}{4} \phi^{2} H^{2},$$ where ##\phi## is a light scalar field...

9. ### I How to determine Spinor in Feynman diagram

Consider Moller scattering, that is $$e^-(\vec p_1, \alpha)+e^-(\vec p_2, \beta) \quad\longrightarrow\quad e^-(\vec q_1, \gamma)+e^-(\vec q_2, \delta),$$ where the ##\vec{p}_i,\vec q_i## label the momenta of the in and outgoing electrons and the greek letter the spin state. The two relevant...

13. ### I Consfused about the workflow for calculating scattering amplitudes with Feynman diagrams

In the following I will try to deduce the scattering amplitude for a specific interaction. My question is at the bottom, the entire rest is my reasoning to explain how I came to the results I present. My working Let's assume I would like to calculate the second order scattering amplitude in ##...

20. ### Show that the given Green Function is the propagator of a certain Lagrangian

My fundamental issue with this exercise is that I don't really know what it means to "show that X is a propagator".. Up until know I encountered only propagators of the from ##\langle 0\vert [\phi(x),\phi(y)] \vert 0\rangle##, which in the end is a transition amplitude and can be interpreted as...

23. ### Global Positioning System / Clocks in Space

I'm a bit lost at how to exactly start this exercise... As far as I understand we need to first determine ##d\tau_E## and ##d\tau_S##. First question: Since we can neglect the earths movement, can I also neglect the movement of the satellite with respect to the far away observer? If so, I...
24. ### Acceleration in special relativity

I'm struggling in the details of this exercise. Let ##S'## be the reference frame where the acceleration of the spaceship is constant, in which case we have ##u'(t')= a' t'## (since we assume no acceleration at the beginning). The rest frame of the rocket ##S## is connected to ##S'## via a...

28. ### The Lagrangian for a piece of toast falling over the edge of a table

First of all, disclaimer: This isn't an official assignment or anything, so I'm not even sure if there is a resonably simple solution. Consider the following sketch. (Forgive me if it isn't completely clear, I didn't want to fiddle around for too long with tikz...) Let us assume that we can...