Prove the following theorem:
Theorem For a prime number p and integer i,
if 0 < i < p then p!/[(p− i)! * i] * 1/p
Not sure how to go about this. I wanted to do a direct proof and this is what Ive got so far.
let i = p-n
then p!/[(p-n)!*(p-n)] but that doesnt exactly prove much.