# Search results

1. ### Upper and lower sums

I tried to understand what you are asking me but i'm getting confused... again. So i asked a friend and she said: "Mi and mi are the right and left endpoints so to find its exact value, we take the i (which names the specific interval) and multiply it by the value of the subintervals (delta...
2. ### Upper and lower sums

ok. here is everything. i don't know if it helps. Find the upper and lower sum for the region bounded by the graphy of f(x) = x^2 and x-axis between x=0 and x=2. To begin, partition the interval [0,2] into n sublevels, each of length (triangle X) = (b-a)/n = (2-0)/n = 2/n Left endpoints...
3. ### Upper and lower sums

it's not a problem, but a question. Set in the interval [0,2], it asks me to explain why I need to have i minus 1 in finding the lower sum (the left endpoints) where as in finding the upper sum, it is just i.
4. ### Upper and lower sums

In an equation, the upper sum is Mi = 0+i(2/n) and the lower sum is mi = 0+(i-1)(2/n) So the question is why is it (i-1) for the lower sum and only i for the upper sum? Any help is highly appreciated! ^_^