Ohhh okay so its U(initial)-U(final)?
But how would you calculate the U(final) for each charge pair, which would be U = (k*q*qo)/r, if the r approaches infinity and makes U = 0? Wouldnt that make the change in PE the same thing as U(initial)?
Okay that makes sense about the charge pairs. So would you simply add the U values found before and after pushing the charges to infinity? Or would you do U(initial) - U(final), or would you do U(final) - U(initial)?
Yes, I tried that using U = (k*q*qo)/r while considering the three different charges (which means that there would be three different U values). Would you simply use this formula for the three different charges and add the values? Does this account for the fact that you are trying to push the...
1. Three charges are placed at the corners of a rectangle (one charge of -3.3e-6 C is placed on the bottom left hand corner, one charge of 2.7e-6 C on the upper right hand corner, and one charge of -6.6e-6 C on the upper left hand corner.) of length x = 0.65 m and height y = 0.43 m. How much...
1. A parallel-plate capacitor filled with air has plates of area 0.0061 m2 and a separation of 0.65 mm. Find the magnitude of the charge on each plate when the capacitor is connected to a 12 V battery.
2. E = delta(V)/delta(s)
3. I keep getting the wrong answer by using the...