Also, L \{ y^{(n)} \}
where n is the derivative is
s^nY(s)-s^{n-1}y^{(n-1)}(0)-s^{n-2}y^{(n-2)}(0)-...-y(0)
PS. click on the equation to see how to use LaTex extensions. A little popup box should appear with a "click to read LaTex guide" at the bottom.
Good luck.
pull out the e^{-s} leaving:
L^{-1}{ \{ \frac{s}{s^2+1} \}=f(t-a)
Now, the e can be converted to a unit step function U(t-a), and f(s-a) should be apparent.
Combine the unit step function with F(s) to get an end result.
Ok, using the definition of Laplace transforms to find \L\{f(t)\}
Given:
f(t)=\{^{\sin{t}, 0\le{t}<{\pi}}_{0, t\ge{\pi}}
So, this is what I did:
\L\{\sin t\}=\int^{\pi}_{0} e^{-st}\sin t dt+\int^{\infty}_{\pi} e^{-st}(0)dt
=\int^{\pi}_{0} e^{-st}\sin t dt...