Suppose a second rank tensor ##T_{ij}## is given. Can we always express it as the tensor product of two vectors, i.e., ##T_{ij}=A_{i}B_{j}## ? If so, then I have a few more questions:
1. Are those two vectors ##A_i## and ##B_j## unique?
2. How to find out ##A_i## and ##B_j##
3. As ##A_i## and...
I did not understand why (3) is the Fourier transform of -k instead of k. Look, I used the defination,
$$
\int_{-\infty}^{\infty}f(x)e^{-ikx}\,dx=\widetilde{f}(k)\\
$$
Taking complex conjugate on both sides,
$$...
[##f^*## represents complex conjugate of ##f##. ]
[##\widetilde{f}(k)## represents Fourier transform of the function ##f(x)##.]
$$\begin{align}
\int_{-\infty}^{\infty}f^*(x)e^{ikx}\,dx&=\int_{-\infty}^{\infty}f^*(x)\left(e^{-ikx}\right)^*\,dx\\...
Using Fourier transformation, we have,
Comparing with the equation,
$$f(t)=\int_{-\infty}^{\infty}\delta(t-u)f(u)\,du$$
we have,
Thus,
$$\begin{align}
\delta(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i\omega t}\,d\omega\\
&=\frac{1}{2\pi}\lim_{\Omega\rightarrow...