Hello,
consider a full-cone (let me say a cone including bottom half, upper half and the vertex) embedded in ##E^3##. We can endow it with the topology induced by ##E^3## defining its open sets as the intersections between ##E^3## open sets (euclidean topology) and the full-cone thought itself...
Hi,
I'm a bit confused about the locally euclidean request involved in the definition of manifold (e.g. manifold ): every point in ##X## has an open neighbourhood homeomorphic to the Euclidean space ##E^n##.
As far as I know the definition of homeomorphism requires to specify a topology for...