In physics and electromagnetism , Gauss's law, also known as Gauss's flux theorem, (or sometimes simply called Gauss's theorem) is a law relating to the distribution of electric charge to the resulting electric field. In its integral form, it states that the flux of the electric field out of an arbitrary closed surface is proportional to the electric charge enclosed by the surface, irrespective of how that charge is distributed. Even though the law alone is insufficient to determine the electric field across a surface enclosing any charge distribution, this may be possible in cases where symmetry mandates uniformity of the field. Where no such symmetry exists, Gauss's law can be used in its differential form, which states that the divergence of the electric field is proportional to the local density of charge.
The law was first formulated by Joseph-Louis Lagrange in 1773, followed by Carl Friedrich Gauss in 1813, both in the context of the attraction of ellipsoids. It is one of Maxwell's four equations, which forms the basis of classical electrodynamics. Gauss's law can be used to derive Coulomb's law, and vice versa.
I came across someone in the lighting industry who insists that because of Gauss's divergence theorem and Maxwell's Laws that when light is emitted from a surface that it is only emitted orthogonal to the surface. I have tried to point out numerous real world examples that contradict the...
Consider two point charges +q,+q. Separated by distance d.
now there exist a point P on the line joining these two charges where electric field cancels out at distance d/2 from the charge.
If we make a Gaussian surface at this point and work out the surface integral it won't be zero.
since two...
Homework Statement
Two infinite sheets of charges are placed parallel to each other. If the sheet on the left is non conducting and have a uniform charge density 3(sigma) and the one on the right is conducting and has a uniform charge density (sigma). If the area on both plates is 1m^2 then...