# toroidal solenoid Definition and Topics - 3 Discussions

Toroidal inductors and transformers are inductors and transformers which use magnetic cores with a toroidal (ring or donut) shape. They are passive electronic components, consisting of a circular ring or donut shaped magnetic core of ferromagnetic material such as laminated iron, iron powder, or ferrite, around which wire is wound.
Although in the past, closed-core inductors and transformers often used cores with a square shape, the use of toroidal-shaped cores has increased greatly because of their superior electrical performance. The advantage of the toroidal shape is that, due to its symmetry, the amount of magnetic flux that escapes outside the core (leakage flux) is low, therefore it is more efficient and thus radiates less electromagnetic interference (EMI).
Toroidal inductors and transformers are used in a wide range of electronic circuits: power supplies, inverters, and amplifiers, which in turn are used in the vast majority of electrical equipment: TVs, radios, computers, and audio systems.

View More On Wikipedia.org
1. ### Toroid with Air Gap magnetostatics problem

Homework Statement consider a toroidal electromagnet with an iron ring threaded through the turns of wire. The ring is not complete and has a narrow parallel-sided air gap of thickness d. The iron has a constant magnetization of magnitude M in the azimuthal direction. Use Ampere's law in terms...
2. ### I Movement of a iron ring inside a toroidal solenoid

What happens when you apply power to a toroidal solenoid with a iron ring inside? Does the ring move? Does the speed of movement depend on the amount of power? Sorry if this is too easy, I have no education in physic.
3. ### Poloidal current in toroidal solenoid

Hi, I'm trying to figure out how the current density for a poloidal current in toroidal solenoid is written. I found you may define a torus by an upper conical ring ##(a<r<b,\theta=\theta_1,\phi)##, a lower conical ring ##(a<r<b,\theta=\theta_2,\phi)##, an inner spherical ring...