Hey all,(adsbygoogle = window.adsbygoogle || []).push({});

I'm wondering if someone can help me understand how to apply the boundary conditions to the diffusion equation in one dimension. Diffusion equation is:

[tex]\frac{\partial u}{\partial t}[/tex]=D*[tex]\frac{(\partial)^{2}u}{\partial x^{2}}[/tex]

The initial condition is:

[tex]u(x,0)=0[/tex]

And the boundary conditions are:

[tex]\frac{\partial u(0,t)}{\partial x}[/tex]=[tex]\frac{\partial u(L,t)}{\partial x}[/tex]=0

I've been trying to solve this by seperation of variables, and letting [tex]u(x,t)=T(t)X(x)[/tex]I get the two equations:

[tex]\frac{dT}{dt}+DT=a^{2}[/tex]

and

[tex]\frac{d^{2}X}{dx^{2}}+X=a^{2}[/tex]

Then for my solutions I get:

[tex]T(t)=C_{1}e^{-a^{2}Dt}[/tex]

and

[tex]X(x)=C_{2}sin(ax)+C_{3}cos(ax)[/tex]

so then,

[tex]u(x,t)=T(t)X(x)=C_{1}e^{-a^{2}Dt}(C_{2}sin(ax)+C_{3}cos(ax))[/tex]

To apply my boundary/initial conditions, I then differentiate wrt x, and obtain the three simultaneous equations:

[tex]C_{1}(C_{2}sin(ax)+C_{3}cos(ax))=0[/tex]

[tex]C_{2}C_{1}e^{-a^{2}Dt}=0[/tex]

[tex]C_{1}e^{-a^{2}Dt}(C_{2}cos(aL)-C_{3}sin(aL))=0[/tex]

When I try to solve this, I find that the only possible solutions are [tex]C_{1}=C_{2}=C_{3}=0[/tex] but that can't be right.

What am I missing?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# 1-d diffusion

**Physics Forums | Science Articles, Homework Help, Discussion**