• Support PF! Buy your school textbooks, materials and every day products Here!

1-D motion freefall

  • Thread starter frosty8688
  • Start date
  • #1
126
0
1. At t=0, a stone is dropped from the top of a cliff above a lake. Another stone is thrown downward 1.6 s later from the same point with an initial speed of 32 m/s. Both stones hit the water at the same instant. Find the height of the cliff.



2. d[itex]_{1}[/itex]=[itex]\frac{1}{2}[/itex]gt[itex]_{1}[/itex][itex]^{2}[/itex]; d[itex]_{2}[/itex]=v[itex]_{02}[/itex]t[itex]_{2}[/itex]+[itex]\frac{1}{2}[/itex]gt[itex]_{2}[/itex][itex]^{2}[/itex];d[itex]_{1}[/itex]=d[itex]_{2}[/itex]; t[itex]_{2}[/itex]=t[itex]_{1}[/itex]- 1.6s



3. [itex]\frac{1}{2}[/itex]gt[itex]_{1}[/itex][itex]^{2}[/itex]=v[itex]_{02}[/itex]t[itex]_{2}[/itex]+[itex]\frac{1}{2}[/itex]g(t[itex]_{1}[/itex]-1.6s)[itex]^{2}[/itex]. [itex]\frac{1}{2}[/itex](9.81 m/s[itex]^{2}[/itex])t[itex]_{1}[/itex][itex]^{2}[/itex]=(32 m/s)(t[itex]_{1}[/itex]-1.6s)+[itex]\frac{1}{2}[/itex](9.81 m/s[itex]^{2}[/itex])(t[itex]_{1}[/itex]-1.6s)[itex]^{2}[/itex]. Here is where I get stuck in solving the quadratic.
 

Answers and Replies

  • #2
301
7
You should solve the equation yourself as it contains only maths. The equation will give you two values and i think one value of t1 will come negative which you must ignore.Try it :)
 
  • #3
126
0
For some reason I get 2.82 seconds for t.
 
  • #4
301
7
According to my calculation t comes to be 2.02 second
 
  • #5
301
7
So height of cliff is 20m
 
  • #6
301
7
Note i have taken g=10m/s^2
 

Related Threads on 1-D motion freefall

Replies
10
Views
2K
Replies
4
Views
1K
Replies
3
Views
2K
Replies
2
Views
13K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
6
Views
1K
  • Last Post
Replies
1
Views
1K
Replies
1
Views
4K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
5
Views
2K
Top