I have trying solving this PDE for some random boundary values, and were wondering if someone could verify my calculations?(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

\[

\begin{array}{l}

T_t = DT_{xx} \\

T\left( {0,t} \right) = 0,T(\pi ,t) = 0,T(x,0) = \frac{1}{4}\left( {\left( {x - \frac{\pi }{2}} \right)^2 + \frac{{\pi ^2 }}{4}} \right) \\

T = T\left( {x,t} \right) = \sum\limits_{n = 1}^\infty {a_n \left( t \right)\sin \left( {nx} \right)} \\

T_{xx} = - n^2 \sum\limits_{n = 1}^\infty {a_n \left( t \right)\sin \left( {nx} \right)} \\

T_t = \sum\limits_{n = 1}^\infty {a_n '\left( t \right)\sin \left( {nx} \right)} \\

\Rightarrow \sum\limits_{n = 1}^\infty {a_n '\left( t \right)\sin \left( {nx} \right)} = \sum\limits_{n = 1}^\infty {\left( { - n^2 a_n \left( t \right)} \right)\sin \left( {nx} \right)} \\

\Rightarrow a_n '\left( t \right) = - n^2 a_n \left( t \right) \\

\Rightarrow a_n \left( t \right) = C_n \left( x \right)e^{ - n^2 t} \\

T = \sum\limits_{n = 1}^\infty {C_n \left( x \right)e^{ - n^2 t} \sin \left( {nx} \right)} \\ \end{array}

[/tex]

[tex]

\begin{array}{l}

C_n = \frac{2}{\pi }\int\limits_0^\pi {f\left( x \right)\sin \left( {nx} \right)dx} \\

= \frac{1}{{2\pi }}\int\limits_0^\pi {\left( {x^2 - \pi x} \right)\sin \left( {nx} \right)dx} \\

= \frac{1}{{2\pi }}\left[ {\mathop {\frac{1}{{n^2 }}\sin \left( {nx} \right)\left( {2x + \pi } \right)}\limits_{ = 0} - \frac{1}{{n^3 }}\cos \left( {nx} \right)\left( {n^2 \left( {x^2 + \pi x} \right) - 1} \right)} \right]_0^\pi \\

= \frac{1}{{\pi n^3 }}\left( {1 - n^2 \pi ^2 } \right) \\

T\left( {x,t} \right) = \sum\limits_{n = 1}^\infty {\pi ^{ - 1} n^{ - 3} \left( {1 - n^2 \pi ^2 } \right)e^{ - n^2 t} \sin \left( {nx} \right)} \\

\end{array}

\]

[/tex]

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# 1D Heat diffusion

Loading...

Similar Threads for Heat diffusion | Date |
---|---|

A Heat equation on infinite domain | Jan 19, 2018 |

A Understanding dummy variable in solution of 1D heat equation | Nov 3, 2017 |

A Damped Thermal Oscillations | Oct 24, 2017 |

The difference between the Heat and Diffusion equation ? | Mar 10, 2009 |

Explicit solution of heat/diffusion equation | Nov 23, 2007 |

**Physics Forums - The Fusion of Science and Community**