I have trying solving this PDE for some random boundary values, and were wondering if someone could verify my calculations?(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

\[

\begin{array}{l}

T_t = DT_{xx} \\

T\left( {0,t} \right) = 0,T(\pi ,t) = 0,T(x,0) = \frac{1}{4}\left( {\left( {x - \frac{\pi }{2}} \right)^2 + \frac{{\pi ^2 }}{4}} \right) \\

T = T\left( {x,t} \right) = \sum\limits_{n = 1}^\infty {a_n \left( t \right)\sin \left( {nx} \right)} \\

T_{xx} = - n^2 \sum\limits_{n = 1}^\infty {a_n \left( t \right)\sin \left( {nx} \right)} \\

T_t = \sum\limits_{n = 1}^\infty {a_n '\left( t \right)\sin \left( {nx} \right)} \\

\Rightarrow \sum\limits_{n = 1}^\infty {a_n '\left( t \right)\sin \left( {nx} \right)} = \sum\limits_{n = 1}^\infty {\left( { - n^2 a_n \left( t \right)} \right)\sin \left( {nx} \right)} \\

\Rightarrow a_n '\left( t \right) = - n^2 a_n \left( t \right) \\

\Rightarrow a_n \left( t \right) = C_n \left( x \right)e^{ - n^2 t} \\

T = \sum\limits_{n = 1}^\infty {C_n \left( x \right)e^{ - n^2 t} \sin \left( {nx} \right)} \\ \end{array}

[/tex]

[tex]

\begin{array}{l}

C_n = \frac{2}{\pi }\int\limits_0^\pi {f\left( x \right)\sin \left( {nx} \right)dx} \\

= \frac{1}{{2\pi }}\int\limits_0^\pi {\left( {x^2 - \pi x} \right)\sin \left( {nx} \right)dx} \\

= \frac{1}{{2\pi }}\left[ {\mathop {\frac{1}{{n^2 }}\sin \left( {nx} \right)\left( {2x + \pi } \right)}\limits_{ = 0} - \frac{1}{{n^3 }}\cos \left( {nx} \right)\left( {n^2 \left( {x^2 + \pi x} \right) - 1} \right)} \right]_0^\pi \\

= \frac{1}{{\pi n^3 }}\left( {1 - n^2 \pi ^2 } \right) \\

T\left( {x,t} \right) = \sum\limits_{n = 1}^\infty {\pi ^{ - 1} n^{ - 3} \left( {1 - n^2 \pi ^2 } \right)e^{ - n^2 t} \sin \left( {nx} \right)} \\

\end{array}

\]

[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# 1D Heat diffusion

**Physics Forums | Science Articles, Homework Help, Discussion**