I must solve the following two coupled EDOs in the context of a Lagrangian mechanics problem (a rigid pendulum of lenght l attached to a mass sliding w/o friction on the x axis). The problem statement does not mention that we can make small angle approximation. It says "find the equations of motion and solve them for the following initial conditions:...". Is this feasable?(adsbygoogle = window.adsbygoogle || []).push({});

[tex](m_1+m_2)\ddot{x}+m_2l\ddot{\theta}\cos(\theta)-m_2l\dot{\theta}^2\sin(\theta)=0[/tex]

[tex]l\ddot{\theta}+\ddot{x}\cos(\theta)+g\sin(\theta)=0[/tex]

They can be uncoupled but there remains a second order non-linear ODE to solve.

Is this doable analytically?

And an annexed question (perhaps this one is more of a physical nature): why can we say that [itex]\dot{\theta}\approx 0[/itex] in the small angle approximation? The angle can be small and nevertheless vary furiously fast. What indicates that if theta is small, the so is its derivative?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# 2 coupled EDOs

**Physics Forums | Science Articles, Homework Help, Discussion**