26th Derivative of a Function

  • Thread starter Frillth
  • Start date
  • #1
80
0
Homework Statement

Given that f(x) = sin(x) for x =/= 0 and f(x) = 1^x for x=0, find the 26th derivative of f at 0. Hint: can you find a power series for f(x)?

The attempt at a solution

I have no idea how to solve this problem. Since 1^x is always 1, the first derivative at 0 is 0, so ALL derivatives must be 0, right? I'm confused as to how a power series even comes into play in this problem.
 

Answers and Replies

  • #2
StatusX
Homework Helper
2,564
1
That's a very strange defintion. Note that f(0) is just a number, so all they had to say was f(x)=1 for x=0, the 1^x bit is superfluous. But moreover, the function is not continuous at x=0, so doesn't have any derivatives, let alone 26. Which leads me to ask, are you sure you copied the question correctly?
 
  • #3
80
0
I just noticed that somebody erased a line in my book! It should have been sin(x)/x for x=/=0 and 1 for x=0. That makes a lot more sense.
 
  • #4
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
9,970
132
I advise you to use the hint given!
 

Related Threads on 26th Derivative of a Function

Replies
2
Views
1K
Top