2nd order Linear DE

202
0
Hi,

When solving a 2nd order Linear DE with constant coefficients ([itex]ay''+by'+cy=0[/itex]) we are told to look for solutions of the form [itex]y=e^{rt}[/itex] and then the solution (if we have 2 distinct roots of the characteristic) is given by
[itex]y(t)=c_1 e^{r_1 t}+c_2 e^{r_2 t}[/itex]

This is clearly a solution, but how do we know there are no other solutions?
That is, how do we know this is the general solution?
 

tiny-tim

Science Advisor
Homework Helper
25,790
249
Hi Apteronotus! :smile:
… how do we know there are no other solutions?
It's easy to prove for the first-order case …

if y' - ry = 0, put y = zert, then (z' + rz)ert = rzert

so ert = 0 (which is impossible),

or z' + rz = rz, ie z' = 0, ie z is constant :wink:

and now try (y' - ry)(y' - sy) = 0, using the same trick twice :smile:
 

Related Threads for: 2nd order Linear DE

  • Posted
Replies
1
Views
747
  • Posted
Replies
2
Views
1K
Replies
1
Views
4K
Replies
1
Views
5K
  • Posted
Replies
0
Views
1K
  • Posted
Replies
2
Views
4K
  • Posted
Replies
11
Views
3K
  • Posted
Replies
4
Views
2K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top