Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

3D coordinates

  1. May 13, 2012 #1
    hello EveryBody,

    In the 3D Coordinates I always find 4 parameters instead of 3.

    A = (X, Y, Z, 1)

    I wonder why?

    thank you.
     
  2. jcsd
  3. May 13, 2012 #2

    micromass

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    Please provide more information. We can't answer your question like this.
     
  4. May 13, 2012 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    You don't. What you have there is NOT "3 D coordinates" but, rather, "3 D projective coordinates" (the name coming from "projective geometry" that I won't go into). In "projective coordinates" the point (x, y, z) is represented by (x, y, z, 1) with the understanding that if any calculation changes that last coordinate to something other than 1, say, a (and a cannot be 0), then we interpret (x, y, z, a) as meaning (x/a, y/a, z/a, 1).

    Projective coordinates are often used in computer graphics because they have the property that translations, as well as rotations, can be be written as matrix multiplications.

    In ordinary 3D coordinates, a rotation, by angle [itex]\theta[/itex] around the x-axis, is given by
    [tex]\begin{bmatrix}cos(\theta) & -sin(\theta) & 0 \\ sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix}[/tex]
    with obvious changes for rotations around the y and z axes and all rotations given by products of such matrices.

    In "projective coordinates" such a rotation would be just
    [tex]\begin{bmatrix}cos(\theta) & -sin(\theta) & 0 & 0 \\ sin(\theta) & cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z \\ 1\end{bmatrix}[/tex]

    The translation, that moves (x, y, z, 1) to (x+ a,y+ b, z+ c, 1), in projective coordinates, is given by
    [tex]\begin{bmatrix}1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z \\ 1\end{bmatrix}[/tex]
     
    Last edited: May 13, 2012
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: 3D coordinates
  1. 3D rays (Replies: 17)

  2. 3D Curvature (Replies: 3)

Loading...