7.2.6 trig int with radical

  • #1

karush

Gold Member
MHB
3,264
4
Evaluate
$$\int_0^{2\pi}\sqrt{\dfrac{1-\cos{x}}{2}}\,dx$$
ok my baby step is
$$\int _0^{2\pi }\frac{\sqrt{1-\cos \left(x\right)}}{\sqrt{2}}dx$$
then ?

W|A said the answer was 4
 

Answers and Replies

  • #2
Evaluate
$$\int_0^{2\pi}\sqrt{\dfrac{1-\cos{x}}{2}}\,dx$$
ok my baby step is
$$\int _0^{2\pi }\frac{\sqrt{1-\cos \left(x\right)}}{\sqrt{2}}dx$$
then ?

W|A said the answer was 4
$\cos x = 1 - 2\sin^2\frac x2$
 
  • #3
$$I=\int _0^{2\pi }\frac{\sqrt{1-\cos \left(x\right)}}{\sqrt{2}}dx=
\int _0^{2\pi }\dfrac{\sqrt{1-\left(1 - 2\sin^2\dfrac x2\right)}}{\sqrt{2}}dx=
\int _0^{2\pi }\dfrac{\sqrt{2\sin^2{\dfrac x2}}}{\sqrt{2}}=\int _0^{2\pi }\sin{\frac x2}\,dx $$
then
$$I=-2\cos{\dfrac x2}\biggr| _0^{2\pi }=$$

ok I don't see this approaching 4
 
  • #4
$$I=\int _0^{2\pi }\frac{\sqrt{1-\cos \left(x\right)}}{\sqrt{2}}dx=
\int _0^{2\pi }\dfrac{\sqrt{1-\left(1 - 2\sin^2\dfrac x2\right)}}{\sqrt{2}}dx=
\int _0^{2\pi }\dfrac{\sqrt{2\sin^2{\dfrac x2}}}{\sqrt{2}}=\int _0^{2\pi }\sin{\frac x2}\,dx $$
then
$$I=-2\cos{\dfrac x2}\biggr| _0^{2\pi }=$$

ok I don't see this approaching 4
$$I=-2\cos{\dfrac x2}\biggr| _0^{2\pi }= -2(\cos\pi - \cos0) = -2(-1 - 1) = 4$$
 

Suggested for: 7.2.6 trig int with radical

Replies
9
Views
530
Replies
2
Views
1K
Replies
4
Views
556
Replies
5
Views
972
Replies
4
Views
2K
Replies
3
Views
1K
Replies
1
Views
575
Replies
1
Views
927
Replies
8
Views
495
Replies
2
Views
355
Back
Top